湛江经开区红树林湿地生态修复系 统治理项目

环境影响报告书

(送审稿)

建设单位(盖章): 湛江开发区新月发展有限公司

编制单位(盖章): 湛江市凯林技术服务有限公司

二O二四年七月

目录

1	ŧ	既述	4
	1.1	项目由来	4
	1.2	环境影响评价过程	5
	1.3	建设项目环境影响特点	6
	1.4	分析判定相关情况	8
	1.5	环评结论	9
2	ļ	总论	.10
	2.1	评价目的与原则	10
	2.2	编制依据	11
	2.3	区域环境功能区划	18
	2.4	评价标准	36
	2.5	环境影响识别评价因子的选取	42
	2.6	评价工作等级	44
	2.7	评价范围	49
	2.8	主要环境保护目标及社会活动关注区	56
3	I	_程分析	.64
	3.1	建设项目概况	64
	3.2	建设项目施工组织设计	104
	3.3	土石方平衡分析	114
	3.4	项目占用海岸线和海域状况	115
	3.5	项目施工期污染源强分析及拟采用的污染防治措施	117
	3.6	项目营运期污染源强分析及拟采用的污染防治措施	122
	3.7	项目各阶段非污染环境影响分析	122
	3.8	建设项目清洁生产分析	123
	3.9	建设项目总量控制	126
4	[区域自然环境概况	128
	4.1	工程区域自然环境概况	128
	4.2	工程区域自然资源概况	142
	4.3	区域开发利用现状	156
5	3	环境质量现状调查与评价	162
		水文动力环境现状调查与评价	
	5.2	地形地貌与冲淤环境现状调查与评价	182
	5.3	海洋环境质量现状调查概况	188

	5.4 大气环境质量现状	275
	5.5 声环境质量现状	276
	5.6 动物资源现状调查	277
	5.7 红树林资源现状调查	281
	5.8 陆域生态环境质量现状	285
6	6 施工期环境影响预测与评价	290
	6.1 海洋水文动力环境影响预测与评价	290
	6.2 海洋地形地貌与冲淤环境影响分析	310
	6.3 海水水质环境影响预测与评价	311
	6.4 对沉积物环境的影响	315
	6.5 海洋生态和生物资源环境影响预测与评价	315
	6.6 海域生物资源损耗分析	319
	6.7 对海域生态敏感目标影响分析	323
	6.8 大气环境影响分析	329
	6.9 环境噪声影响预测与评价	329
	6.10 固体废弃物影响分析	332
	6.11 陆域生态、水生环境影响分析	332
	6.12 对鸟类的影响分析	333
	6.13 对周边航道及通航环境影响	336
	6.14 施工导致碳排放的影响分析	337
7	7 运营期环境影响预测与评价	338
	7.1 海洋水质环境影响预测与评价	338
	7.2 海洋沉积物环境影响预测与评价	339
	7.3 固体废物环境影响分析	339
	7.4 海洋生态和生物资源环境影响预测与评价	340
	7.5 对海洋敏感目标的影响分析	340
8	3 环境保护措施及其可行性论证	343
	8.1 污染环境保护对策措施	343
	8.2 非污染防治对策措施	346
	8.3 海洋生态保护对策措施	
	8.4 环境保护设施和对策措施	352
	8.5 生态用海方案的环境可行性	355
9	环境事故风险分析与评价	357
-	9.1 环境风险评价原则与工作程序	
	9.2 环境风险识别与事故概率分析	359
	4 (2 C C C C C C C C C C C C C C C C C C	1 19

9.3	3 船舶事故溢油风险影响预测与评价	363
9.4	4 船舶碰撞风险分析	378
9.5	5 自然灾害风险分析	378
9.6	6 赤潮风险分析	379
9.7	7 环境风险防范措施	380
9.8	8 风险事故应急预案	383
9.9	9 环境风险评价小结	390
10	项目建设与规划相符性分析	391
10).1 产业政策相符性分析	391
10	0.2 占用方案与相关法律法规的相符性分析	392
10	0.3 规划相符性分析	407
10).4 与海域相关规划相符性分析	421
11	环境经济损益分析	433
11	.1 环境保护设施和措施投资估算	433
11	.2 生态效益分析	434
11	.3 经济效益分析	435
11	.4 社会效益分析	436
11	.5 环境影响效益分析	437
11	.6 环境影响经济损益分析结论	439
12	环境管理	442
12	1 环境管理机构及职责	442
12	2 环境管理计划	442
12	2.3 环境监理计划	444
12	.4 环境监测计划	447
12	2.5 "三同时"环保设施验收一览表	451
13	环境影响综合评价结论	453
13	.1 项目概况	453
13	.2 环境现状分析与评价结论	453
13	.3 环境影响评价结论	458
13	.4 与相关规划和产业政策相符性分析结论	464
13	5.5 公众参与	464
13	.6 总量控制	465
13	.7 建议	465
13	8 项目总结论	465

1 概述

1.1 项目由来

当今时代背景,"碳达峰,碳中和"的时代趋势下,"十四五"时期我国生态文明建设进入以降碳为重点战略方向。在最严格的生态环境保护制度下,统筹山水林田湖草系统治理,全方位、全地域、全过程开展生态文明建设是时代大势所趋。为贯彻落实习总书记"一定要尊重科学、落实责任,把红树林保护好"的重要指示精神,相关政府机构全面加强红树林保护修复工作,保护珍稀植物是保护生态环境的重要内容。湛江东海岛背靠中国最大红树林海岸,成为中国红树林碳汇经济的开创者,坐拥中欧、中日候鸟迁徙通道广东重要鸟区之一兼多条候鸟迁徙通道的转场地,拥有丰厚的自然资源,为迎合前所未有的中国大市场,旅游市场重大转型,精品生态旅游取代传统观光旅游的发展方向奠定基础,不断推动中国旅游大国向旅游强国的迈进。

湛江市为深入贯彻习近平生态文明思想,落实自然资源部、国家林业和草原局《红树林保护修复专项行动计划(2020-2025年)》及《广东省红树林保护修复专项行动计划实施方案》有关要求,于 2021年12月30日印发《湛江市建设"红树林之城"行动方案(2021-2025)》,制定到2025年营造和修复红树林面积4183公顷(营造红树林2813公顷、修复现有红树林1379公顷)的目标,推动湛江市红树林的保护利用,引导全市上下坚定不移走生态优先、绿色低碳的高质量发展道路,打响"红树林之城"特色品牌,打造广东生态建设的新名片。

2022年12月13日,湛江市召开建设"红树林之城"工作推进会暨重点提案督办会,深入学习贯彻党的二十大精神,积极践行习近平生态文明思想,全力推动市政协重点提案办理,加快推进"红树林之城"建设,打造广东生态文明建设新名片、"绿美广东"建设新亮点。市委书记刘红兵强调,加强红树林保护修复,抓紧出台《湛江市红树林资源保护条例》,压实地方和部门的红树林生态环境监管职责,切实把红树林管理好保护好;提升红树林科学研究水平,广泛开展国际湿地生态合作,提升我市红树林生态修复与保护管理的科学化标准化水平;拓展红树林开发利用途径,努力打造海洋碳汇核算方法学的"湛江标准",推进海洋碳中和试点城市建设。

为进一步打响"红树林之城"特色品牌,湛江市人民政府于今年制定《湛江市红树林营造工作实施方案》,要求2024年前全市完成修复红树林1370公顷,营造红树林2813公顷,其中经开区红树林营造任务不少于683.3公顷。

本项目位于湛江市经济技术开发区东海岛西部民安街道办范围内,整个片区保护区总面积3044.9公顷。对现有红树林实施全面保护,逐步完成自然保护区内的养殖塘等开发性、生产性建设活动的清退,恢复红树林自然保护地生态功能。

整个项目营造红树林规模为 683.37 公顷(约 10249.61 亩)。项目分两期建设,其中,一期营造红树林规模为 9.87 公顷(约 148.11 亩),二期营造红树林规模为 673.50 公顷(约 10102.5 亩)。设计内容包括地形改造、苗木种植、管护以及养殖设计等。

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》和《建设项目环境影响评价分类管理名录(2021年版)》等规定,本项目属于"五十四、海洋工程"中"158海洋生态修复工程"中"工程量在 10 万立方米及以上的清淤、滩涂垫高等工程",应编制环境影响报告书。为此,湛江开发区新月发展有限公司(以下简称建设单位)委托湛江市凯林技术服务有限公司(以下简称我单位)承担本项目环境影响报告评价工作(详见附件 1)。

接受委托后,我单位组成了项目组,制定了本项目环境影响评价实施计划,收集相关资料,并根据有关法律法规、环境政策、环境影响评价技术导则等,编制了《湛江经开区红树林湿地生态修复系统治理项目环境影响报告书》。

1.2 环境影响评价过程

我单位受湛江开发区新月发展有限公司的委托,承担了湛江经开区红树林湿地生态修复系统治理项目环境影响报告书的编制工作。接受委托后,我单位成立了项目组,组织有关技术人员到现场及其周围进行了实地勘查与调研,编制完成了《湛江经开区红树林湿地生态修复系统治理项目环境影响报告书》。环境影响评价工作过程见图 1.2-1。

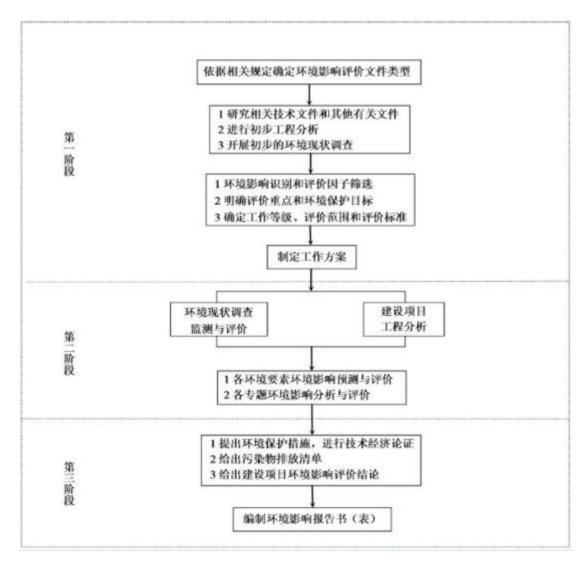


图 1.2-1 环境影响评价工作过程

1.3 建设项目环境影响特点

本次环评是基于当地政府部门完成鱼塘征收后再进场施工,退塘工程内容不在本次评价范围。

1.3.1 施工期

(1) 悬浮泥沙

项目滩涂高程改造会产生悬浮泥沙,并且对周围环境会产生一定的影响,悬浮泥沙随着施工的结束而结束,对周围环境的影响是短暂的。

(2) 废水

施工期废水主要为施工期施工人员生活污水,船舶含油污水;施工人员住宿与办公租用附近村庄民房,项目设置临时移动厕所,项目生活污水经临时移动厕

所处理后,运至民安街道污水处理厂进行处理。船舶含油污水应严格按照《船舶水污染物排放控制标准)(GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位处理。施工期污水均收集处理,对海域水质影响较小。

(3) 废气

项目施工船舶、各类施工机械及车辆排放的燃油废气,其主要污染物为烟尘、SO₂、NOx、CO和烃类等,鉴于施工使用的船机设备较少,燃油废气产生量相对较小,且排放点分散,施工方在施工过程中尽量使用低污染排放的设备,日常注意设备的检修和维护,保证设备在正常工况条件下运转,废气污染的影响很小。

(4) 噪声

项目施工期施工船舶、运输车辆、机械设备会有噪声产生,施工期间向周围排放噪声应按照《中华人民共和国噪声污染防治法》等相关规定,严格按《建筑施工场界环境噪声排放标准》(GB12523-2011)进行控制。施工单位将按照有关规定,采取切实可行的措施来防治噪声污染,如选用低噪声设备,合理安排施工时段等措施,减少噪声对周边声环境的影响。项目施工期对周围声环境影响随着施工结束而结束。

(5) 固体废物

施工期产生的固体废物主要为生活垃圾、滩涂垃圾、薄膜袋、不合格苗木、断损苗木、病死坏死苗木以及残油、废油等。

生活垃圾、薄膜袋、修剪的树枝等固体废物通过及时收集,交由当地环卫部门统一外运进行处理;滩涂垃圾清理收集后分拣,可回收部分回收,不可回收部分交由环卫部门清运;施工船舶作业产生的残油、废油等危险废物,统一交由有危险废物处理资质的单位将其安全处置;不合格苗木、病死坏死苗木等交有能力单位处理。

施工期间产生的各类固体废物经合理处理后对环境的影响不明显。

(6) 非污染环境影响分析

工程施工期的影响主要是取土垫高、种植床建造过程占用和破坏海洋底栖生物的栖息环境,将会对海洋生态资源造成损害,导致海洋生物量的损失。此外,工程改变区域自然环境和生态环境,可能对工程区域局部海域的生态适宜性和生物多样性产生一定影响。

1.3.2 运营期

本项目是生态修复项目,运营期的固废主要为病死坏死植株和缠绕在树枝上的海漂垃圾,不会产生噪音、大气污染、水污染等。

1.4 分析判定相关情况

(1) 与产业政策的相关符合性判断

本项目为红树林湿地生态修复系统治理项目,根据《产业结构调整指导目录(2024年本)》,本项目属于鼓励类中"第四十二、环境保护与资源综合利用-2.生态环境修复和资源利用:矿山生态环境恢复工程,海洋环境保护及科学开发,海洋生态修复",是国家鼓励发展的产业;根据《市场准入负面清单(2022年版)》,本项目不属于市场禁止准入行业,故符合产业政策要求。

(2) 与海洋功能区划的符合性

根据《广东省海洋功能区划(2011-2020年)》(2012年),项目所处海域的海洋功能区为通明海海洋保护区,周边海域的海洋功能区有雷州湾农渔业区、东海岛南部工业与城镇用海区、湛江港港口航运区、南渡河口海洋保护区。本项目为红树林湿地生态修复系统治理项目,不涉及围填海,主要进行地形改造,苗木种植、管护等工程建设,不影响所在海域的保障功能。本项目未改变周围海域的自然属性,建设不会使项目所属海域的水质、沉积物和生物质量恶化,运营期红树林生长后会改善周边海域水质、沉积物和生物质量,项目建设不涉及围填海;在项目施工过程中,会产生悬浮物对周围海水水质产生一定影响,预测结果表明,施工悬浮物扩散范围主要集中在项目所在区域,通过采取积极有效的水污染防治措施降低悬浮物、加强环境监督管理,工程施工期不会对周围生态环境造成较大的明显的不利影响,可降低对海洋功能区的影响,且能够满足环境保护要求。

项目通过红树林修复,提高海岸防护功能,防风固沙,保护砂质海岸资源,同时改善海洋生态环境,符合海洋生态红线对该区域的要求。

因此,本项目的建设符合广东省海域功能区划要求。

(3) "三线一单"相符性分析

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府【2020】71号),本项目位于优先保护单元,根据《湛江市人

民政府关于印发湛江市"三线一单"生态环境分区管控方案的通知》,项目涉及生态保护红线区。

本项目全部区域位于《广东省海洋功能区划》中的"通明海海洋保护区", 其主导功能为:保护海岛周边红树林及其生境。

本项目属于红树林湿地生态系统修复工程,位于广东湛江红树林国家级自然保护区的实验区,不位于核心区,且本项目本身属于对保护区内的红树林湿地生态系统进行修复的项目,主要行为是种植红树林,不涉及新增围填海、采矿挖砂,不含养殖内容,不涉及开放性、生产线建设活动,符合《湛江市"三线一单"生态环境分区管控方案》。

综合分析,本项目的建设符合《广东省"三线一单"生态环境分区管控方案》 和《湛江市"三线一单"生态环境分区管控方案》的要求。

(4) 与其他规划相符性

项目主要建设内容为红树林种植,属于生态修复项目,项目符合《全国重要生态系统保护和修复重大工程总体规划(2021—2035年)》、《广东省湿地保护条例》、《红树林保护修复专项行动计划(2020-2025年)》、《广东省红树林保护修复专项行动计划实施方案》、《广东省生态环境保护"十四五"规划》、《广东省海洋生态环境保护"十四五"规划》、《广东省湿地保护条例》、《湛江市红树林湿地保护条例》、《湛江市海洋生态环境保护"十四五"规划》和《湛江市红树林湿地保护条例》、《湛江市海洋生态环境保护"十四五"规划》和《湛江市红树林保护修复规划(2021-2025年)》等相关政策文件要求。

1.5 环评结论

本项目建设符合国家产业政策及相关规划要求,施工过程中产生的废水、废气、噪声经采取相应的污染防治措施后对周边的环境影响较小,产生的固体废物均得到妥善处理;运营期产生的固体废物均得到妥善处理。针对本项目的工程特点和环境特征,本报告提出了相应的环境保护和污染防治对策措施、风险防范对策措施。且本项目属于生态修复项目,本项目的实施将可提高所在海域的生态环境质量,对所在海洋环境具有良好的环境正面效益。在建设单位切实执行国家有关法律法规、严格落实报告书中提出的各项污染防治、生态保护对策措施及风险防范措施的前提下,从环境保护角度考虑,湛江经开区红树林湿地生态修复系统治理项目的建设是可行的。

2 总论

2.1 评价目的与原则

2.1.1 评价目的

- (1)通过环境现状监测与调查,掌握本项目所在区域的自然环境及环境质量现状,为环境影响评价提供依据。
 - (2) 针对本项目的特点和污染特征,确定主要污染因子和环境影响要素;
- (3)分析本项目对当地环境造成影响的范围和程度,并提出进一步避免或减轻污染的对策和建议;
- (4) 从技术、经济角度分析本工程采用污染治理措施的可行性,从环境保护的角度对本工程的建设是否可行作出明确的结论:
- (5)为主管部门提供决策依据,为设计工作规定防治措施,为环境管理提供科学依据;
 - (6) 从环保的角度明确给出项目建设的可行性结论。

2.1.2 评价原则

在认真贯彻《中华人民共和国环境影响评价法》基础上,坚持环境影响评价 为环境管理服务;同时结合城市总体规划、环境功能区划及其它相关规划,科学、 客观、公正地开展环评工作。本次环评遵循以下原则:

- (1)针对项目的工程特征和所在地区的环境特征进行深入细致地调查和分析,并抓住危害环境的主要因素;
 - (2) 严格贯彻国家与地方的有关方针、政策、标准、规范以及规划;
- (3) 在环境影响评价工作中要做到准确和公正,评价结论要明确、可信、 有充分的科学依据;
- (4)为缩短评价周期并保证环评报告质量,通过实测以取得必须的有关资料外,尽量利用现有的环境监测及环境评价资料。

2.2 编制依据

2.2.1 国家法律法规及政策

- (1) 《中华人民共和国环境保护法》(2015年1月1日施行);
- (2)《中华人民共和国海洋环境保护法》(2023年10月24日,中华人民共和国第十四届人民代表大会常务委员会第六次会议表决修订,自2024年1月1日起实施);
 - (3)《中华人民共和国环境影响评价法》(2018年12月29日修正);
 - (4)《中华人民共和国海域使用管理法》(2002年1月1日施行);
 - (5)《中华人民共和国海岛保护法》(2010年3月1日施行);
- (6)《中华人民共和国水污染防治法》(2017 年 6 月 27 日修改, 2018 年 1 月 1 日施行);
- (7)《中华人民共和国固体废物污染环境防治法》(2020 年 9 月 1 日 施 行);
 - (8) 《中华人民共和国大气污染防治法》(2018年 10月 26日修正);
 - (9) 《中华人民共和国渔业法》(2013年12月28日修正);
- (10)《中华人民共和国海上交通安全法》(2021 年 4 月 29 日修订, 2021 年 9 月 1 日施行):
- (11)《中华人民共和国航道法》(2016年7月2日第十二届全国人民代表大会常务委员会第二十一次会议修正);
- (12)《中华人民共和国港口法》(2018年12月29日第十三届全国人民代表大会常务委员会第七次会议修正);
- (13)《中华人民共和国土地管理法》(2019 年 8 月 26 日修正, 2020 年 1 月 1 日施行);
- (14)《中华人民共和国清洁生产促进法》(2012 年 2 月 29 日修改, 2012 年 7 月 1 日施行);
 - (15)《中华人民共和国循环经济促进法》(2018年 10月 26日修订);
 - (16) 《中华人民共和国节约能源法》(2018年 10月 26日修正);
 - (17) 《中华人民共和国防洪法》(2016年7月2日修改并施行);
 - (18)《中华人民共和国水土保持法》(2010年 12月 25日修订,2011年

3 月 1 日施行);

- (19)《中华人民共和国野生动物保护法》(2022年12月30日,第十三届全国人民代表大会常务委员会第三十八次会议修订,自2023年5月1日起施行):
 - (20) 《中华人民共和国自然保护区条例》(2017年 10月 7日修订);
- (21)《海洋自然保护区管理办法》(国家海洋局,1995 年 5 月 29 日施行);
 - (22) 《国家危险废物名录(2021年版)》;
- (23)《建设项目环境保护管理条例》(2017 年 7 月 16 日修订, 2017 年 10 月 1 日施行);
- (24)《防治海洋工程建设项目污染损害海洋环境管理条例》(2018 年 3 月 19 日第二次修订);
 - (25) 《防治船舶污染海洋环境管理条例》(2018年3月19日修订);
- (26)《防治陆源污染物污染损害海洋环境管理条例》(1990年6月22日中华人民共和国国务院令第61号发布,自1990年8月1日起施行);
- (27) 《环境影响评价公众参与办法》(生态环境部令第 4 号, 2019 年 1 月 1 日起施行);
- (28)《中华人民共和国国民经济和社会发展第十四个五年规划和二〇三五年元景目标的建议》:
- (29)《国务院办公厅关于做好自然保护区管理有关工作的通知》(国办发 (2010) 63 号, 2010 年 12 月 28 日):
- (30)《国家重点保护野生动物名录》(国家林业和草原局,农业农村部公告 2021 年第 3 号);
 - (31)《建设项目环境影响评价分类管理名录(2021年版)》;
 - (32)《海岸线保护与利用管理办法》(国家海洋局,2017年3月31日);
- (33)《中华人民共和国湿地保护法》(2021 年 12 月 24 日第十三届全国人民代表大会常务委员会第三十二次会议通过,2022 年 6 月 1 日起施行);
- (34)《中华人民共和国防治海岸工程建设项目污染损害海洋环境管理条例》 (中华人民共和国国务院令第 62 号,2017 年 3 月 1 日第二次修订);
 - (35) 《中华人民共和国噪声污染防治法》(2021年 12月 24日第十三

届全国人民代表大会常务委员会第三十二次会议通过,自 2022 年 6 月 5 日起施行);

- (36) 《红树林生态修复手册》(自然资办发(2021)1809号);
- (37) 《红树林保护修复专项行动计划(2020~2025年)》;
- (38) 《中华人民共和国湿地保护法》(2022 年 6 月 1 日起施行);
- (39)《中华人民共和国防治海岸工程建设项目污染损害海洋环境管理条例》 (修订,2017年3月);
- (40)《近岸海域环境功能区管理办法》(1999年12月10日国家环境保护总局令第8号发布);
- (41)《关于组织申报中央财政支持海洋生态保护修复项目的通知》(财办资环〔2020〕3号);
 - (42) 《海洋生态保护修复资金管理办法》 (财资环〔2020〕76 号)。

2.2.2 地方性法律法规及政策

- (1)《广东省环境保护条例》(广东省第十三届人民代表大会常务委员会 第四十七次会议于 2022 年 11 月 30 日第三次修正);
- (2)《广东省实施〈中华人民共和国海洋环境保护法〉办法》(2018 年 11 月 29 日广东省第十三届人民代表大会常务委员会第七次会议修改);
- (3)《广东省大气污染防治条例》(根据 2022 年 11 月 30 日广东省第十三届人民代表大会常务委员会第四十七次会议《关于修改〈广东省机动车排气污染防治条例〉等六项地方性法规的决定》修正);
- (4)《广东省固体废物污染环境防治条例》(广东省第十三届人民代表大会常务委员会第四十七次会议于 2022 年 11 月 30 日第三次修正);
 - (5) 《广东省海域使用管理条例》(2021年9月29日修正);
 - (6) 《广东省渔业管理条例》(2019 年 9 月 24 日修正);
 - (7) 《广东省野生动物保护管理条例》(2020年3月31日修订);
 - (8) 《广东省航道管理条例》(1996年1月1日施行);
 - (9)《广东省海洋生态文明建设行动计划(2016~2020)》;
 - (10)《广东省近岸海域污染防治实施方案》(粤环函(2018)1158号);
 - (11) 广东省自然资源厅、广东省林业局印发《广东省红树林保护修复专项

行动计划实施方案》(粤自然资发〔2021〕6号);

- (12) 《近岸海域污染防治方案》 (环办水体函(2017)430号);
- (13)《广东省自然资源厅关于下发生态保护红线和"双评价"矢量数据成果的函》:
 - (14) 《广东省湿地保护条例》(2020年 11月 27日);
- (15)《广东湛江红树林国家级自然保护区管理办法》(2018年2月1日 起施行):
- (16)《广东省自然资源厅关于印发我省海岸线修测成果的通知》(粤自然 资函〔2022〕51 号);
- (17) 《广东省自然资源厅关于印发海岸线占补实施办法(试行)的通知》 (2021 年 7 月 2 日);
- (18)《广东省航道管理条例》(广东省第八届人民代表大会常务委员会第十八次会议于 1995 年 11 月 21 日通过):
 - (19)《广东省固体废物污染环境防治条例》;
- (20)《广东省自然资源厅广东省生态环境厅广东省林业局关于严格生态保护红线管理的通知(试行)》(粤自然资发〔2023〕11号);
- (21)《自然资源管理工作中若干底线要求(第二版)》粤自然资函(2023) 212号:
- (22)《关于加强国土空间生态修复项目规范实施和监管管理的通知》自然资办发〔2023〕10号。

2.2.3 相关规划和区划

- (1)《中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》;
- (2)《全国海洋功能区划(2011~2020)》(2012 年 3 月 3 日国务院批准):
 - (3) 《"十四五"海洋生态环境保护规划》;
- (4)《全国海洋主体功能区规划》(国发〔2015〕42 号,2015 年 8 月 1 日);
 - (5)《海洋工程环境影响评价管理规定》(国海规范(2017)7号);

- (6)《全国重要生态系统保护和修复重大工程总体规划(2021-2035年)》;
- (7) 《红树林保护修复专项行动计划(2020-2025年)》;
- (8) 《全国湿地保护规划(2022-2030)》;
- (9) 《"十四五"海洋经济发展规划》;
- (10) 《湿地保护管理规定》(2013 年 5 月 1 日施行);
- (11)《广东省主体功能区规划》(粤府〔2012〕120 号,2012 年 9 月 14 日):
- (12)《广东省海洋功能区划(2011-2020 年)》(粤府(2013)9号,2013年1月22日);
- (13) 《广东省人民政府关于修改〈广东省海洋功能区划(2011-2020 年)〉的通知》(粤府函(2016)328号);
 - (14)《广东省海洋环境保护规划》(粤府办〔2002〕102号);
- (15)《广东省环境保护规划纲要(2006-2020 年)》(粤府〔2006〕35 号, 2006 年 4 月 4 日):
- (16)《广东省生态环境保护"十四五"规划》(粤环(2021)10号,2021年 11月 9日);
 - (17)《广东省海洋生态环境保护"十四五"规划》(粤环〔2022〕7号);
- (18)《广东省近岸海域环境功能区划》(粤府办〔1999〕68 号,1999 年7月27日):
 - (19)《广东省海洋主体功能区规划》(粤府函(2017)359号);
- (20)《广东省海洋生态环境保护规划"十四五"规划》(广东省海洋与 渔 业厅 2017 年 11 月 15 日发文实施):
 - (21)《广东省海岸带综合保护与利用总体规划》(粤府(2017)120号);
 - (22) 《广东省近岸海域污染防治实施方案》(粤环函〔2018〕1158 号)
- (23)《广东省沿海经济带综合发展规划(2017-2030年)》(粤府(2017) 119号);
 - (24) 《广东省海岛保护规划(2011-2020)》;
- (25)《广东省国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》(粤府〔2021〕28 号):
 - (26)《广东省人民政府办公厅关于印发广东省自然资源保护与开发"十四

- 五"规划的通知》(粤府办〔2021〕31号);
- (27)《广东省人民政府办公厅关于印发广东省海洋经济发展"十四五"规划的通知》(粤府办〔2021〕33 号);
- (28)《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府〔2020〕71号);
 - (29) 《广东省国土空间规划(2021-2035年)》:
 - (30) 《湛江市海洋经济发展"十四五"规划》;
 - (31) 《湛江市生态环境保护"十四五"规划》;
- (32)《湛江市国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》(湛府〔2021〕36 号);
- (33)《湛江市人民政府关于印发湛江市"三线一单"生态环境分区管控方案的通知》(湛府〔2021〕30号);
 - (34)《湛江市 2023 年"三线一单"生态环境分区管控成果更新调整成果》;
 - (35)《近岸海域环境功能区管理办法》(国家环境保护总局令第8号);
 - (36) 《湛江市环境保护规划(2006-2020)》;
- (37)《广东省航道发展规划(2020-2035 年)》(粤交规(2020)786 号, 2020 年 12 月 8 日);
 - (38) 《广东省养殖水域滩涂规划(2021-2030年)》;
 - (39) 《湛江市养殖水域滩涂规划 (2018-2030年)》;
 - (40) 《湛江市海洋生态保护"十四五"规划》;
 - (41) 《湛江市国土空间总体规划(2021-2035)》:
 - (42)《湛江经济技术开发区(东海岛)国土空间总体规划(2021-2035)》。

2.2.4 行业标准和技术规范

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2) 《海洋工程环境影响评价技术导则》(GB/T19485-2014);
- (3) 《环境影响评价技术导则 大气环境》(HJ2.2-2018);
- (4) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018);
- (5) 《环境影响评价技术导则 声环境》(HJ2.4-2021);
- (6)《环境影响评价技术导则 生态环境》(HJ19-2022);

- (7) 《环境影响评价技术导则 地下水环境》 (HJ610-2016);
- (8) 《环境影响评价技术导则土壤环境(试行)》(HJ964-2018);
- (9)《建设项目环境风险评价技术导则》(HJ169-2018);
- (10)《建设项目对海洋生物资源影响评价技术规程》(SC/T9110-2007);
- (11) 《海洋渔业资源调查规范》(SC/T 9404-2012);
- (12) 《海水水质标准》(GB3097-1997):
- (13) 《海洋沉积物质量》(GB18668-2002);
- (14) 《海洋生物质量》(GB18421-2001):
- (15) 《海洋调查规范》(GB/T12763-2007);
- (16) 《海洋监测规范》(GB17378-2007);
- (17) 《海洋功能区划技术导则》(GB17108-2006);
- (18)《全国海岸带和海涂资源综合调查简明规程》:
- (19) 《第二次全国海洋污染基线调查技术规程》(第二分册);
- (20)《建设项目海洋环境影响跟踪监测技术规程》(国家海洋局,2002年);
- (21) 《用水定额第 3 部分: 生活》(DB44/T1461.3-2021);
- (22) 《大气污染物排放限值》(DB44/27-2001);
- (23) 《建筑施工场界环境噪声排放标准》(GB12523-2011);
- (24) 《工业企业厂界环境噪声排放标准》(GB12348-2008);
- (25) 《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020);
- (26) 《危险废物贮存污染控制标准》(GB18597-2023);
- (27) 《港口码头溢油应急设备配备要求》(JT/T451-2009);
- (28) 《红树林建设技术规程》(LYT 1938-2011):
- (29) 《船舶水污染物排放控制标准》(GB3552-2018);
- (30) 《水上溢油环境风险评估技术导则》(JT/T 1143-2017);
- (31) 《广东省海洋生物增殖放流技术指南》;
- (32) 《红树林生态修复手册》(自然资办发(2021) 1809 号)。

2.2.5 其他相关资料

- (1) 环评委托书;
- (2) 湛江经开区红树林湿地生态修复系统治理项目初步勘察设计(一期)

(中交第四航务工程勘察设计院有限公司,2024年1月);

- (3)《湛江经开区红树林湿地生态修复系统治理项目初步勘察设计(二期)》 (中交第四航务工程勘察设计院有限公司,2024年6月);
- (4)《关于〈湛江经开区红树林湿地生态系统治理项目初步勘察设计(二期)〉意见的函》(粤湛红保函〔2024〕100号);
- (5)《关于对〈湛江经开区红树林湿地生态修复系统治理项目对广东湛江 红树林国家级自然保护区生态影响专题报告(征求意见稿)〉的复函》(粤湛红 保函〔2024〕110号)。
 - (6)《关于同意开展湛江经开区红树林湿地生态修复系统治理项目的意见》 (湛自然资(保护地)(2024)62号);
 - (7) 《关于湛江经开区红树林湿地生态修复系统治理项目的承诺》。

2.3 区域环境功能区划

2.3.1 近岸海域功能区划

根据《广东省近岸海域环境功能区划》(粤府办〔1999〕68 号〕,本项目临近水体为通明海二类区,附近水体为通明港四类区,其中通明海二类区为二类功能区,主要功能为红树林、养殖、预留;通明港四类区为四类功能区,主要功能为港口、跨海桥梁、预留。通明海二类区水质目标为《海水水质标准》(GB3097-1997)二类,通明港四类区水质目标为《海水水质标准》(GB3097-1997)三类。具体详见图 2.3.1-1、2.3.1-2。

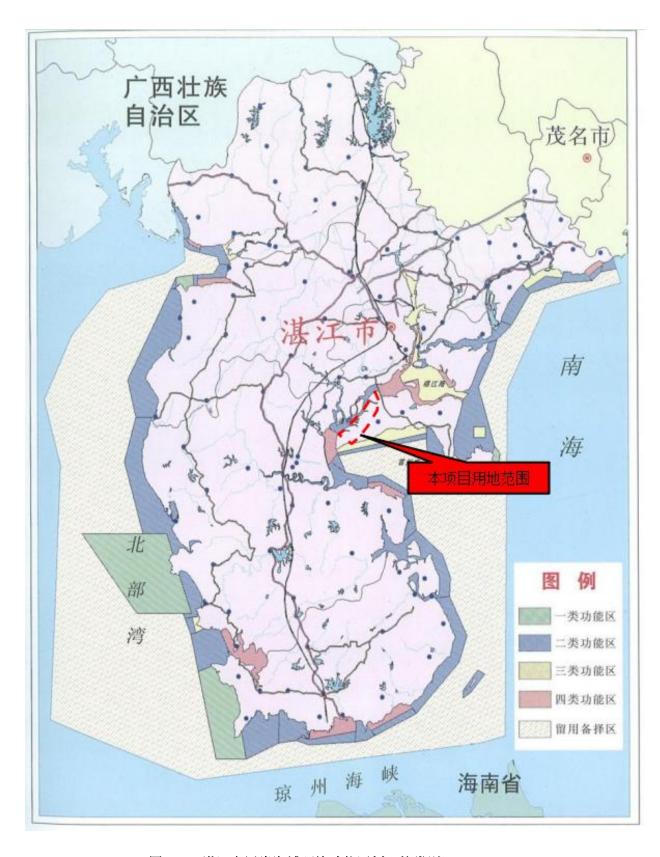


图 2.3-1 湛江市近岸海域环境功能区划(按类别)

附图 2.3-2 项目与近岸海域功能区划图(按水质)

2.3.2 海洋功能区划

根据《广东省海洋功能区划(2011-2020年)》(2012年),项目所处海域的海洋功能区为通明海海洋保护区,周边海域的海洋功能区有雷州湾农渔业区、东海岛南部工业与城镇用海区、湛江港港口航运区、南渡河口海洋保护区,本次海域评价范围内所涉及的海域功能区见表 2.3.2-1 和图 2.3.2-1。

表 2.3.2-1 项目所在海域海洋功能区分布表

	/DTE	-L-Ak E		与项目位置	· 사사 등 · 사 · 제	管理要3	求
序号	代码 代码	功能区	地理范围	关系	功能区类型	海域使用管理	海洋环境保护
1	A6-6	通明海海洋保护区	东至: 110°19′39″ 西至: 110°09′34″ 南至: 20°57′40″ 北至: 21°08′03″		海洋保护区	2、保留港江国家级红树林保护区地明海厅区非核心区内的围海养殖等渔业用海,限制扩大养殖规模;3 严格按照国家关于海洋环境保护以及自然保	1、保护通明海红树林; 2、严格控制养殖污染和水体富营养化,防止外来物种入侵; 3、加强保护区海洋生态环境监测; 4、执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量
2	A1-4	雷州湾农渔业 区	东至: 110°39′09″ 西至: 110°07′39″ 南至: 20°15′15″ 北至: 21°00′59″		农渔业区	2、保障南渡河口避风塘、迪明浬港、博赊浬港、 赤坎仔渔港、人工鱼礁等用海需求; 3、适当保障港口航运用海需求; 4、保护南渡河、通明港河口海岸、生物海岸; 5、严禁在南渡河河口海域围填海,维护海湾防 洪纳潮功能; 6. 禁止性岛等破坏性活动。	1、保护东海岛海草床生态系统; 2、保护龙虾、石斑鱼、栉江珧等重 要渔业品种; 3、严格控制养殖自身污染和水体富 营养化,防止外来物种入侵; 4、加强渔港环境污染治理,生产废 水、生活污水须达标排海; 5、执行海水水质二类标准、海洋沉 积物质量一类标准和海洋生物质量 一类标准。

3	B3-1	东海岛南部工 业与城镇用海 区	东至: 110°30′12″ 西至: 110°11′57″ 南至: 20°55′44″ 北至: 21°00′11″	南 工业与城镇用 海区	节约集约利用海域资源; 5、工程建设期间采取有效措施降低对湛江硇洲 岛海洋资源自然保护区的影响;	1、保护民安-山北红树林及其生境; 2、基本功能未利用前,执行海水水 质二类标准、海洋沉积物质量一类标 准和海洋生物质量一类标准; 3、工程建设期间及建设完成后,执 行海水水质三类标准、海洋沉积物质 量二类标准和海洋生物质量二类标
4	A2-3	涯江港港 口 暄	东至: 110°30′08″ 西至: 110°18′27″ 南至: 21°03′58″ 北至: 21°21′01″	则 港口航运区	2、保障调顺渔业基地及巡航执法基地等用海需求;3、围填海须进行严格论证,优化围填海平面布局,节约集约利用海域资源;4、改善水动力条件和泥沙冲淤环境,维护湛江	港湾的综合整治; 2、加强海洋环境监测,建立完善的 应急体系;
5	B6-4		东至: 110°12′06″ 西至: 110°10′59″ 南至: 20°51′00″ 北至: 20°53′12″	<i>注</i> :1:1:1:1:X	2、适当保留增养殖等渔业用海,严格控制围海	3、执行海水水质一类标准、海洋沉

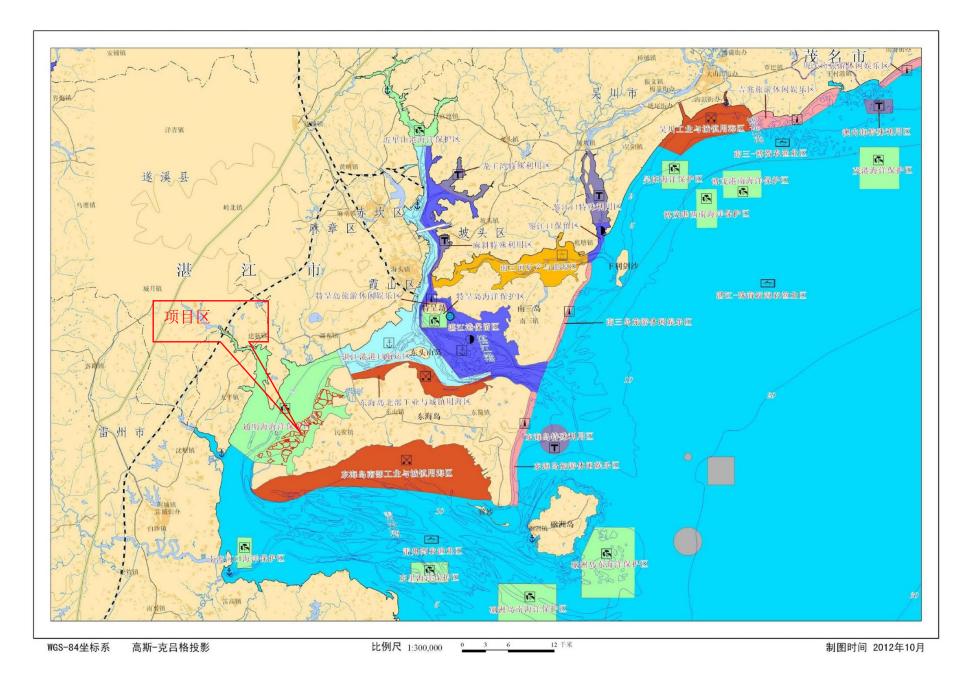


图 2.3.2-1 项目与广东省海洋功能区划图的位置关系图

2.3.3 环境空气功能区划

根据《湛江市环境保护规划纲要(2006-2020)》和《环境空气质量标准》(GB3095-2012)及其 2018 年修改单,项目保护区修复工程位于广东湛江红树林国家级自然保护区内,属一类环境空气质量功能区,参照执行《环境空气质量标准》(GB3095-2012)及其 2018 年修改单中的一级标准。

图 2.3.3-1 项目周边环境空气功能区划分布图

2.3.4 声环境功能区划

根据《湛江市城市声环境功能区划分(2020年修订)》,项目所在海域未

划分声环境功能区划。本项目大部分位于广东湛江红树林国家级自然保护区内, 故执行《声环境质量标准》(GB3096-2008)1类标准。

图 2.3.4-1 湛江市城市声环境功能区划分图

2.3.5 生态环境功能区划

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府〔2020〕71号),本项目位于海域管控单元中的优先保护单元、一般管控单元,陆域管控单元中的重点管控单元。具体详见图 2.3.5-1。

根据《湛江市人民政府关于印发湛江市"三线一单"生态环境分区管控方案的通知》(湛府〔2021〕30号〕及《湛江市2023年"三线一单"生态环境分区管控成果更新调整成果》,本项目陆域部分位于 ZH44081120004(建成区-东海岛-硇洲岛重点管控单元)重点管控单元、ZH44081120001(湛江大型产业园区东海岛片区)重点管控单元(园区型);海域部分位于: HY44080010024(广东湛江红树林国家级自然保护区-一般管控区)优先保护单元、HY44080010059(湛江麻章雷州湾地方级湿地自然公园)优先保护单元、HY44080030010(通明海海洋保护区)一般管控单元。

ZH44081120004 (建成区-东海岛-硇洲岛重点管控单元)重点管控单元要素细类为:大气环境受体敏感重点管控区、大气环境高排放重点管控区、水环境城镇生活污染重点管控区、高污染燃料禁燃区、地下水开采重点管控区、建设用地

污染风险重点管控区。ZH44081120001(湛江大型产业园区东海岛片区)重点管控单元(园区型)要素细类:大气环境高排放重点管控区、建设用地污染风险重点管控区。

湛江市"三线一单"环境管控单元区划、湛江市经济技术开发区"三线一单" 环境管控单元图详见图 2.3.5-2、图 2.3.5-3。

本项目在广东省"三线一单"应用平台进行了生态功能区划复核,将本项目用地矢量图输入平台并经相符性分析后,本项目共涉及12个单元,分别是ZH44081120001(建成区-东海岛-硇洲岛重点管控单元)陆域环境重点管控单元、ZH44081120021(湛江大型产业园区东海岛片区重点管控单元)陆域环境重点管控单元、XS4408113110011(经济技术开发区生态空间一般管控区)生态空间一般管控区、YS4408111130003(湛江经济技术开发区一般生态空间)一般生态空间优先保护区、YS4408113210002(龙腾河湛江东海岛控制单元)水环境一般管控区、HY44080010024(广东湛江红树林国家级自然保护区-一般控制区)海域环境管控单元优先保护区、HY44080010059(湛江麻章雷州湾地方级湿地自然公园)海域环境管控单元优先保护单元、HY44080030010(通明海海洋保护区)海域环境管控单元一般管控单元、YS4408111310010(优先保护区、YS4408112310001(重点管控区)大气环境高排放重点管控区、YS4408112310002(重点管控区)大气环境高排放重点管控区、具体详见图 2.3.5-4~图 2.3.5-8。

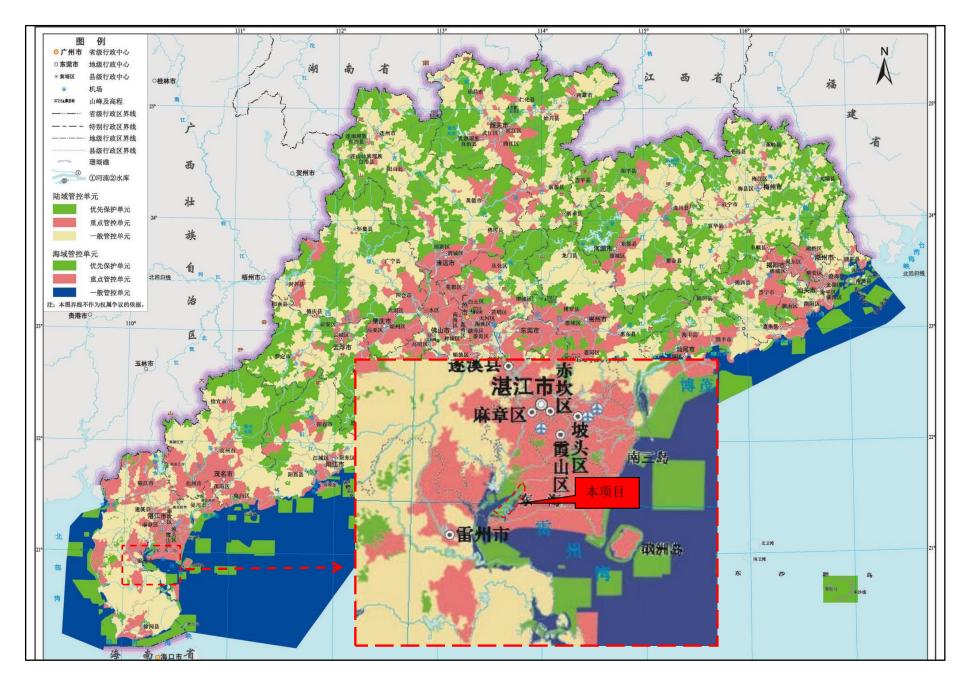


图 2.3.5-1 广东省"三线一单"环境管控单元图

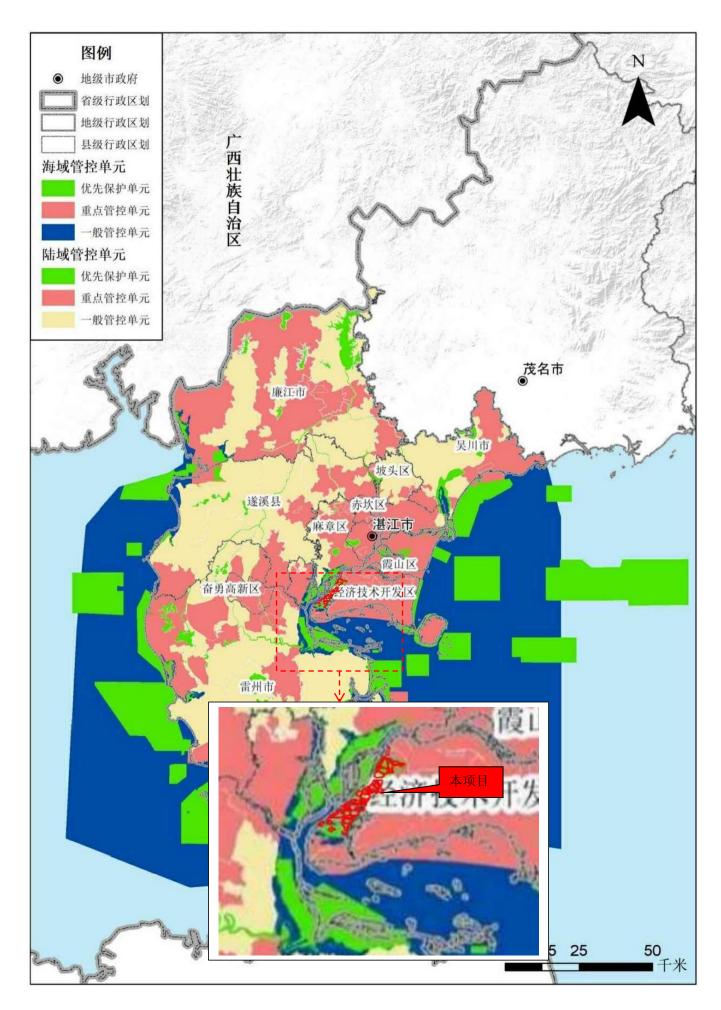


图 2.3.5-2 湛江市"三线一单"环境管控单元区划

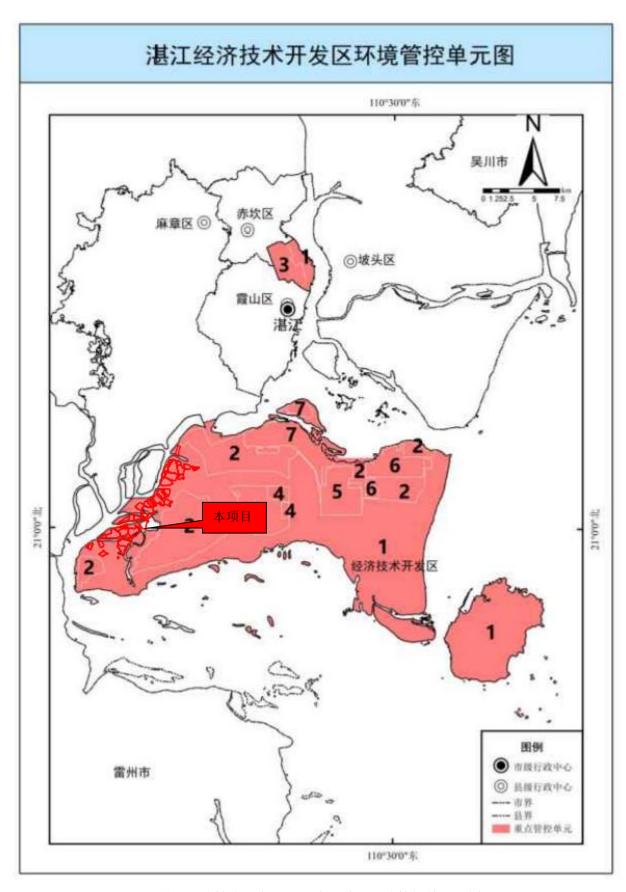


图 2.3.5-3 湛江经济技术开发区"三线一单"环境管控单元区划

图 2.3.5-4 广东省"三线一单"应用平台截图(陆域环境管控区划)



图 2.3.5-5 广东省"三线一单"应用平台截图(海域环境管控区划)

图 2.3.5-6 广东省"三线一单"应用平台截图(水环境一般管控区)

图 2.3.5-7 广东省"三线一单"应用平台截图(一般生态空间管控区划)

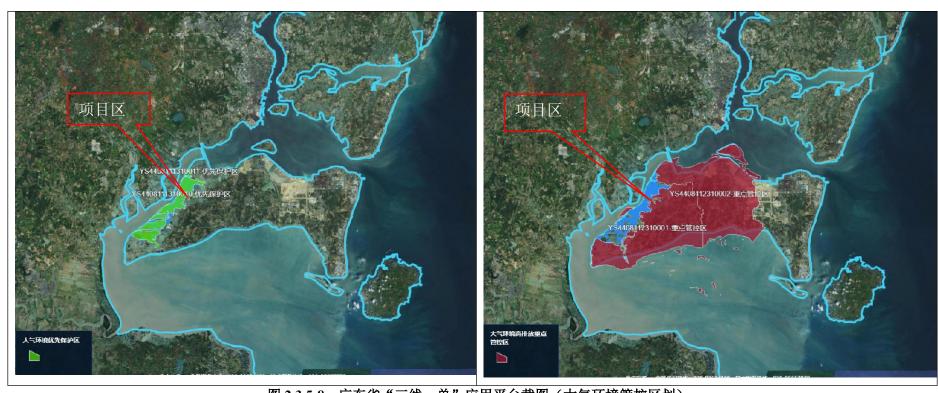
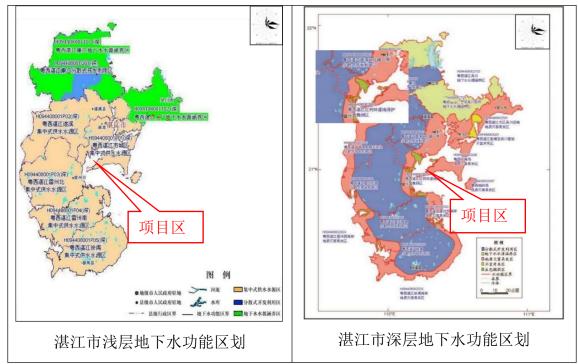



图 2.3.5-8 广东省"三线一单"应用平台截图(大气环境管控区划)

2.3.6 地下水

项目所在区域不涉及广东省地下水功能区划,详见"图 2.3.6-1 项目与湛江市地下水功能区划的位置关系图"。

2.3.6-1 项目与湛江市地下水功能区划的位置关系图

2.4 评价标准

2.4.1 环境质量标准

2.4.1.1 海水水质标准

根据《广东省海洋功能区划(2011-2020年)》(2012年),项目所处海域的海洋功能区为通明海海洋保护区,执行海水水质二类标准。同时根据《广东省近岸海域环境功能区划》(粤府办〔1999〕68号)、《湛江市环境保护规划(2006-2020)》,项目涉及功能区类别为二类,水质目标为二类。综合判定项目所在海域执行《海水质量标准》(GB3097-1997)第二类标准。

序号	项目	第一类	第二类	第三类	第四类
1	рН	7.8~8.5		6.8~8.8	
2	溶解氧	>6	>5	>4	>3

3	悬浮物	人为增加量≤10		人为增加量 ≤100	人为增加量 ≤150
4	化学需氧量(CODMn)	≤2	≤3	≤4	≤5
5	生化需氧量(BOD5)	≤1	≤3	≤4	≤5
6	无机氮(以 N 计)	≤0.20	≤0.30	≤0.40	≤0.50
7	活性磷酸盐(以 P 计)	≤0.015		≤0.030	≤0.045
8	汞	≤0.00005	<	≤0.0002	≤0.0005
9	镉	≤0.001	≤0.005	≤0.010	
10	铅	≤0.001	≤0.005	≤0.010	≤0.050
11	砷	≤0.020	≤0.030	≤0.050	
12	铜	≤0.005	≤0.010	≤0.	050
13	锌	≤0.020	≤0.050	≤0.10	≤0.50
14	六价铬	≤0.005	≤0.01	≤0.02	≤0.05
15	总铬	≤0.05	≤0.10	≤0.20 ≤0.50	
16	石油类	≤0.	.05	≤0.30 ≤0.50	
17	硫化物 (以硫计)	≤0.002	≤0.005	≤0.010	≤0.025

2.4.1.2 海洋沉积物质量

根据《广东省海洋功能区划(2011-2020 年)》,项目所处海域的海洋功能 区为通明海海洋保护区,执行海洋沉积物质量一类标准。

表 2.4.1-2 海洋沉积物质量标准(单位: ×10-6, 干重, 有机碳为%)

序号	项目	第一类	第二类	第三类
1	有机碳≤	2.0	3.0	4.0
2	石油类≤	500.0	1000.0	1500.0
3	硫化物≤	300.0	500.0	600.0
4	汞≤	0.20	0.50	1.0
5	砷≤	20.0	65.0	93.0
6	镉≤	0.50	1.50	5.00
7	铅≤	60.0	130.0	250.0
8	铜≤	35.0	100.0	200.0
9	锌≤	150.0	350.0	600.0
10	铬≤	80.0	150.0	270.0

2.4.1.3 海洋生物质量

根据《广东省海洋功能区划(2011-2020 年)》,项目所处海域的海洋功能区为通明海海洋保护区,执行海洋生物质量一类标准。

表 2.4.1-3 海洋生物(贝类)质量标准(GB18421-2001)(鲜重: mg/kg)

序号	项目	第一类	第二类	第三类
1	总汞≤	0.05	0.10	0.30
2	砷≤	1.0	5.0	8.0
3	镉≤	0.2	2.0	5.0
4	铬≤	0.5	2.0	6.0
5	铅≤	0.1	2.0	6.0
6	铜≤	10	25	50 (牡蛎 100)
7	锌 ≤	20	50	100 (牡蛎500)
8	石油烃≤	15	50	80
	注:	以贝类去壳部分的	的鲜重计	

表 2.4.1-4 海洋生物体评价标准(湿重: mg/kg)

生物类别	铜	铅	镉	锌	总汞	石油烃	引用标准
鱼类	20	2.0	0.6	40	0.3	20	《全国海岸和海涂资源综合调查简明规
甲壳类	100	2.0	2.0	150	0.2	/	程》和《第二次全国海洋污染基线调查技术规程》中的生物质量评价标准

2.4.1.4 环境空气质量标准

根据《湛江市环境保护规划纲要(2006-2020)》和《环境空气质量标准》(GB3095-2012)及其 2018 年修改单,项目保护区修复工程位于广东湛江红树林国家级自然保护区内,属一类环境空气质量功能区,参照执行《环境空气质量标准》(GB3095-2012)及其 2018 年修改单中的一级标准。

表 2.4.1-5 环境空气质量评价执行标准

污染物名称	取值时间	浓度限值	选用标准
	年平均	$20\mu g/m^3$	
SO_2	24 小时平均	$50\mu g/m^3$	
	1 小时平均	$150\mu g/m^3$	
	年平均	40μg/m ³	
NO ₂	24 小时平均	80μg/m ³	
	1 小时平均	$200\mu g/m^3$	
	年平均	$40\mu g/m^3$	
PM_{10}	24 小时平均	$50\mu g/m^3$	
	年平均	$15\mu g/m^3$	《环境空气质量标准》 (GB3095-2012)及其修改单的一
PM _{2.5}	24 小时平均	$35\mu g/m^3$	级标准
	24 小时平均	4mg/m ³	
CO	1 小时平均	10mg/m ³	

	日最大8 小时平均	$100\mu g/m^3$
O_3	1 小时平均	$160 \mu g/m^3$

2.4.1.5 声环境质量标准

根据《湛江市城市声环境功能区划分(2020 年修订)》,项目所在海域未划分声环境功能区划。本项目位于广东湛江红树林国家级自然保护区内,故执行《声环境质量标准》(GB3096-2008)1类标准。

表 2.4.1-6 声环境质量标准 单位: dB(A)

声环境功能区类别	时段		
一	昼间	夜间	
1 类	≦ 55	≦45	

2.4.2 污染物排放标准

2.4.2.1 水污染物排放标准

1、施工期

(1) 生活污水

施工人员住宿与办公租用附近村庄民房,生活污水纳入当地生活污水一同处理。

(2) 船舶含油污水

施工船舶含油污水排放执行《船舶水污染物排放控制标准》(GB 3552-2018) 中相关要求,禁止直接向沿海海域排放污染物,船舶含油污水经收集上岸后交由 有资质的单位集中处理。

(3) 施工悬沙

项目悬浮泥沙执行广东省地方标准《水污染物排放限值》 (DB44/26-2001) 第二时段一级标准(SS<60mg/l)。

2、运营期

项目抚育期不设施工营地,抚育人员拟雇用周边居民,项目内不产生生活污水。营运期项目不产生废水。

表 2.4.2-1 船舶水污染物排放控制标准

污染 物	水域 类型	船舶类别	排放控制要求		
	内河	2021年1月1日 之前建造的船 舶	自 2018 年 7 月 1 日起,油污水处理装置出水口石油 类限值为 15mg/L; (排放应在船舶航行中进行)执 行或收集并排入接收设施。		
船舶	k.1 4.1	2021年1月1日 及之后建造的 船舶	收集并排入接收设施		
含油废水		400 总吨及以上 的船舶	油污水处理装置出水口石油类限值为 15mg/L; (排放应在船舶航行中进行)执行或收集并排入接收设施。		
	沿海	400 总吨以下渔业船舶	自 2018 年 7 月 1 日起至 2020 年 12 月 31 日止,执行油污水处理装置出水口石油类限值为 15mg/L;自 2021 年 1 月 1 日起油污水处理装置出水口石油类限值为 15mg/L;(排放应在船舶航行中进行)执行或收集并排入接收设施。		
			不 利用船载收集装置收集,排入接收设施。		
船舶	在内河 和距地3 近陆地以 海里域	400 总吨及以上的船舶,以及	得 直 接 排 力用船载生活污水处理装置处理: 2012 年 1 月 1 日以前安装 (含更换) 生活污水处理装置的船舶, 执行 BOD₅≤50mg/L,SS≤150mg/L,耐热大肠菌 群数≤2500 个/L; 2012 年 1 月 1 日及以后安装(含 更换) 生活污水处理装置的船舶,执行 BOD₅≤25mg/L,SS≤35mg/L,耐热大肠菌群数 ≤1000 个/L,COD _{Cr} ≤125mg/L,pH6~8,总氯(总 余水质氯)<0.5mg/L。		
生活 污水	3 海里< 与最近 陆地间 距离≤12 海里的 海域	400 总吨以下且 经核定许可载 运 15 人及以上 的船舶	同时满足: (1)使用设备打碎固形物和消毒后排放; (2)船速不低于4节,且生活污水排放速率不超过相应船速下的最大允许排放速率。		
	与最近 陆地间 距离>12 海里的 海域		船速不低于 4 节,且生活污水排放速率不超过相应船 速下的最大允许排放速率。		
船舶垃圾	在任何海域,应将塑料废弃物、废弃食用油、生活废弃物、焚烧炉灰渣、废弃渔具和电子垃圾收集并排入接收设施对于食品废弃物,在距最近陆地3海里以内(含)的海域,应收集并排入接收设施在距最近陆地3海里至12海里(含)的海域,粉碎或磨碎至直径不大于25mm后方可排放;在距最近陆地12海里以外的海域可以排放对于货物残留物,在距最近陆地12海里以内(含)的海域,应收集并排入接收设施;在距最近陆地12海里以外的海域,不含危害海洋环境物质的货物残留物方可排放。对于动物尸体,在距最近陆地12海里以内(含)的海域,应收集并排入接收设施在距最近陆地12海里以外的海域可以排放在距最近陆地12海里以外的海域可以排放在任何海域,对于货舱、甲板和外表面清洗水,其含有的清洁剂或添加剂不属于允				

2.4.2.2 大气污染物

(1) 船舶尾气

项目施工船舶尾气和结构稳定期打捞海漂垃圾的小艇废气二氧化硫、颗粒物、氮氧化物执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段周界最高浓度限值。

(2) 其他机械

施工器械、运输车辆产生的 SO_2 、NOx 及施工过程中产生的施工扬尘(TSP)执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段周界最高浓度限值。

 类别
 污染物
 标准值(mg/m³)
 标准来源

 SO2
 0.4
 广东省《大气污染物排放限值》

 NOx
 0.12
 (DB44/27-2001)第二时段周界最高浓度限值。

表 2.4.2-2 废气污染物排放标准

2.4.2.3 噪声

1、施工期

项目施工期施工场界排放噪声执行《建筑施工场界环境噪声排放标准》 (GB12523-2011)。

表 2.4.2-4 建筑施工场界环境噪声排放标准(施工期执行) 单位: dB(A)

昼间	夜间
≤ 70	≦55

2、运营期

项目位于1类声环境功能区。项目为红树林营造修复项目,营运期项目基本不产生噪声。

2.4.2.4 固体废物

(1) 一般固废

建设项目一般固废暂存、处置过程执行《一般工业固体废物贮存和填埋污染 控制标准》(GB 18599-2020)。

(2) 危险废物

残油、废油等危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)。

(3) 生活垃圾

施工生活垃圾通过及时收集和进行分类后,交由当地环卫部门统一外运进行处理。

运营期主要固体废物为海漂垃圾等,均收集、分类后交由当地环卫部门统一 外运进行处理。

2.5 环境影响识别评价因子的选取

2.5.1 环境影响识别

项目施工主要内容为开挖、回填淤泥等地形改造、红树林种植,施工期对环境造成影响的因素主要是开挖、回填淤泥产生的悬浮物,施工队伍产生的生活污水、船舶含油污水、生活垃圾等对水质环境和海洋生态环境的影响,以及工程潜在的环境风险事故;运营期的环境影响主要为景观、固体废物。工程环境影响要素和评价因子分析见表 2.5.1-1。

表 2.5.1-1 工程环境影响要素和评价因子分析表

评价时段	环境影响要素	评价因子	工程内容及其表征	影响程度与分析 评价深度
	海洋水文动力 环境	潮流场	开挖淤泥、回填淤泥、红树林种植	<u> </u>
	泥沙冲淤环境	海底地形和冲淤 变化	开挖淤泥、回填淤泥、红树林种植	首 +++
		悬浮物	开挖淤泥、回填淤泥、红树林种植	i +++
	海水水质环境	生活污水	施工队伍	+
		含油污水	施工船舶	+
	沉积物环境	沉积物	开挖淤泥、回填淤泥、红树林种植	直 +
施工期		底栖生物		+++
		浮游生物		++
	海洋生态环境	游泳动物	开挖淤泥、回填淤泥、红树林种植	++
		红树林资源及 其生境		+
	环境风险	自然灾害	台风等不利影响	+
	一 グログルバウツ	赤潮	施工作业	+

		通航	船舶碰撞	++
		石油类	船舶碰撞溢油	+++
	环境空气	SO2、NOx、 TSP	施工机械、船舶废气	+
	声环境	等效连续 A 声 级 LeqdB(A)	施工机械、船舶噪声	+
	陆域生态	植被覆盖度、生 境面积	施工临时占地	+
运营期	景观	景观	红树林种植、生态修复	++
~ 6/91	固体废物	海漂垃圾	红树林生长	+

注:+表示环境影响要素和评价因子所受到的影响程度为较小或轻微,需要进行简要分析 与影响预测;

2.5.2 评价因子选取

根据本工程的环境影响要素识别、工程施工和工程后的特点,对评价因子进行筛选。筛选的结果见表 2.5.2-1。

2.5.2-1 评价因子筛选结果

时段	环境要素	主要污染因素	环境现状评价因子和内容	影响评价因子和内容
施工期	海水水、海水水水、海水水水、海水水水、海水水、海水、海水水、海水水、地水水、境	加;施工过程水 污染物排放	海水水质:水深、温度、盐度、pH、溶解氧、悬浮物、化学需氧量、结酸盐氮、亚硝酸盐氮、氨氮、无机氮、叶绿素 a、活性磷酸盐、阴离子表面活性剂、石油类、铬、铅、镉、锌、铜、汞、砷等 海洋沉积物:pH、硫化物、有机碳、总汞、铜、锌、铅、镉、石油类 温洋生物生态:叶绿素 a 与初级生产力、浮游植物、浮游动物、大型底栖生物、潮间带生物、鱼类浮游生物、游泳动物	取悬沙为预测评价因 子,分析施工悬浮泥沙 对水环境、沉积物环 境、海洋生物的影响; 施工期废水、废气及固 废影响分析

⁺⁺表示环境影响要素和评价因子所受到的影响程度为中等,需要进行常规影响分析与影响预测;

^{+++:}表示环境影响要素和评价因子所受到的影响程度为较大或敏感,需要进行重点影响分析与影响预测。

	水文动 力、冲淤 环境变化	项目建设对海域 流场的影响	工程海域水文动力环境、地质地 貌和冲淤环境分析	工程后海域潮流变化、 冲淤环境变化分析
	大气环境	颗粒物、SO ₂ 、 NOx 、烃类	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , CO, O ₃	颗粒物
	声环境	等效 A 声级	等效连续 A 声级	等效连续 A 声级
	固体废物	一般工业固体废 物、生活垃圾	/	一般工业固体废物、 生活垃圾
	生态环境	施工噪声、施工 废水、施工固 废、植被覆盖 度、生境面积	植物、动物、植被覆盖度、生境 面积	鸟类、红树林、景观
) - ++- ++ -	固体废物	海漂垃圾	/	海漂垃圾
运营期	景观生态	景观生态	景观	景观

2.6 评价工作等级

评价等级根据《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)、《环境影响评价技术导则 大气环境》(HJ2.2-2018)、《环境影响评价技术导则 地表水环境》(HJ2.3-2018)、《环境影响评价技术导则 生态影响》(HJ19-2022)和《建设项目环境风险评价技术导则》(HJ169-2018)、《环境影响评价技术导则 声环境》(HJ2.4-2021)、《海洋工程环境影响评价技术导则》(GB/T19485-2014)中关于评价工作级别划分的判定规则及对该项目周围环境特征、污染物排放量分析,确定本项目环境影响评价工作等级如下:

2.6.1 海洋环境影响评价工作等级

根据《海洋工程环境影响评价技术导则》(GB/T19485-2014)的规定,环境影响评价工作等级依据建设项目的工程特点、工程所在地的环境特征、国家和地方政府所颁布的有关法规等因素而确定。本工程位于广东湛江红树林国家级自然保护区、通明海海洋保护区、生态保护红线区,属生态环境敏感区。根据项目设计方案,工程施工内容主要包括红树林种植、潮沟开挖取土、种植区垫高等。其中,工程滩涂造林和退塘还林均需要滩涂垫高,从周边潮沟开挖取土,取土量约386.50万 m³,大于300×104m³。由此可确定:水动力环境、水质环境、生态和生物资源环境评价等级为1级评价,沉积物环境评价等级为2级评价。

本项目占地总面积 3044.9 公顷,营造红树林 683.37 公顷。本项目不可逆地 对海床自然性状产生一定的冲刷、淤积影响,根据《海洋工程环境影响评价技术 导则》(GB/T19485-2014)判定项目海洋地形地貌与冲淤环境评价等级为 1 级。 因此,本项目的海洋环境影响评价等级为 1 级。

表 2.6.1-1 海洋环境评价等级一览表

			工程所在	单项海洋环境影响评价等级			
海洋工	工程内容	工程规模	海域特征	水文动	水质	沉积	生态和生
程类别	<u> </u>	工作工作工作	和生态环			物环	物资源环
			境类型	力环境	环境	境	境
	水下基础开挖		生态环境	1	1	2	1
	等工程;疏浚、		敏感区	1	1	2	1
	冲 (吹) 填工	开挖、疏					
	程;海中取土	浚、冲(吹)					
其他海	(沙)等工程;	填、倾倒量					
洋工程	挖入式港池、	大于	甘州海域	2	2	3	2
	船坞和码头等	$300 \times 10^4 \text{m}^3$	其他海域	2		3	2
	工程;海上水						
	产品加工工程						
	等						
面积 50	*104m2以上的围	海、填海、海洋	弯改造工程,	海洋地形地貌与冲淤环境评价等级			
围海筑	围海筑坝、防波堤、导流堤(长度等于和大于						
2km) 等	2km)等工程;连片和单项海砂开采工程;其他						
类型海洋工程中不可逆改变或严重改变海岸线、				1			
滩涂、海床自然性状和产生较严重冲刷、淤积的							
	工程项	页目。					

表 2.6.1-2 各单项海洋环境影响评价等级

单项目评价等级 工程规模	水文动力 环境	水质环境	沉积物 环境	生态和生物 资源环境	海洋地形地貌与冲淤环境
潮沟开挖及滩涂垫高 386.50 万 m³	1	1	2	1	1

2.6.2 地表水环境影响评价工作等级

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)的规定,本项目属于水文要素影响型项目。

(1) 施工期地表水环境评价等级

本项目为红树林湿地生态修复工程,施工期不可避免对地表水域水文要素造成影响,属于水文要素影响型建设项目。本项目位于通明海海洋保护区,属于近岸海域;本项目海域工程面积为3044.9hm²(30.4km²),根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)表 2 等级判断依据,本项目属于"入海河口、近岸海域"中的"A1≥0.5km²"类型,故水文要素影响评价等级为一级。

水温 径流 受影响地表水域 工程垂直投影 评 工程垂直投影面积及外扩范围 面积及外扩范 价 A₁/km²; 工程扰动水底面积 取水量占 围 A_1/km^2 ; 工 兴利库容占年 年径流量与 多年平均 A₂/km²; 过水断面宽度占用比 筡 程扰动水底面 径流量百分比 总库容之比α 例或占用水域面积比例R/% 径流量百 级 β/% 积A₂/km² 分比γ/% 入海河口、近岸 河流 湖库 海域 β≥20; 或完全 A₁>0.3; 或 A₁≥0.3; 或 —级 α≤10; 或稳 A₁≥0.5; 或 年调节与多年 γ≥30 A₂≥1.5;或 R≥10A₂≥1.5;或 R≥20 定分层 $A_2 \ge 3$ 调节 20>α>10; 或^{20>β>10}; 或季 0.3>A₁>0.05; 或 0.3>A₁>0.05; 或 0.5>A₁>0.15; 或 二级 调节与不完全 30>γ>10 1.5>A₂>0.2; 或 | 1.5>A₂>0.2; 或 不稳定分层 $3>A_2>0.5$ 年调节 10>R>5 20>R>5 A₁≤0.05; 或 A₁≤0.05; 或 α≥20; 或混 **β≤2**,或无调 A₁≤0.15; 或 级 |A₂≤0.2; 或 R≤5 |A₂≤0.2; 或 R≤5 γ≤10 合型 $A_2 \le 0.5$

表 2.6-3 水文要素影响型建设项目评价等级判定表

(2) 运营期地表水环境评价等级

本项目运营期不排放废水。

注 1: 影响范围涉及饮用水水源保护区、重点保护与珍稀水生生物的栖息地、重要水生生物的自然产卵场、自然保护区等保护目标,评价等级应不低于二级。

注 2: 跨流域调水、引水式电站、可能受到大型河流感潮河段咸潮影响的建设项目,评价等级不低于二级。

注 3: 造成入海河口(湾口)宽度束窄(束窄尺度达到原宽度的 5%以上),评价等级应不低于二级。

注 4:对不透水的单方向建筑尺度较长的水工建筑物(如防波堤、导流堤等) ,其与潮流或水流主流向切线垂直方向投影长度大于2km 时,评价等级应不低于二级。

注 5: 允许在一类海域建设的项目,评价等级为一级。

注 6: 同时存在多个水文要素影响的建设项目,分别判定各水文要素影响评价等级,并取 其中最高等级作为水文要素影响型建设项目评价等级。

2.6.3 环境空气评价工作等级

本项目为红树林湿地生态修复工程。项目实施过程的大气污染源主要为施工作业机械排放的尾气,污染物排放量小,对局部地区的环境影响较小,一旦施工结束,对周边大气环境的影响也将随之消失,而且项目施工位于海域,空气扩散条件好,且多为间歇性污染源,随着施工期的结束,影响会逐渐消失,污染程度较小。项目运营期无废气产生,根据《环境影响评价技术导则 大气环境》(HJ/T2.2-2018),大气环境评价等级定为三级。

2.6.4 声环境影响评价工作等级

根据《环境影响评价技术导则 声环境》(HJ 2.4-2021),评价范围内有适用于 GB 3096 规定的 0 类声环境功能区域,或建设项目建设前后评价范围内声环境保护目标噪声级增量达 5 dB(A)以上(不含 5 dB(A)),或受影响人口数量显著增加时,按一级评价。建设项目所处的声环境功能区为 GB 3096 规定的 1 类、2 类地区,或建设项目建设前后评价范围内声环境保护目标噪声级增量达 3 dB(A)~5 dB(A),或受噪声影响人口数量增加较多时,按二级评价。

在确定评价工作等级时,如建设项目符合两个以上级别的划分原则,按较高级别的评价等级评价。

本项目为红树林营造海洋生态修复工程,运营期不涉及噪声污染源,项目产生的噪声主要来自施工期的施工机械噪声。本项目位于声环境功能 1 类区域,声环境保护目标噪声级增量在 3dB(A)以下,根据《环境影响评价技术导则 声环境》(HJ2.4-2021),声环境评价等级为二级。

2.6.5 环境风险影响评价工作等级

1、风险物质识别

本项目为红树林营造海洋生态修复工程,运营期主要为红树林管护,主要涉及的环境风险物质为船舶漏油、溢油对水体的影响。项目挖土最多投入1艘绞吸式挖泥船(2000m³/h)施工,根据《水上溢油环境风险评估技术导则》(JT/T1143-2017)中的规定,本项目可能最大水上溢油事故溢油量,即设计船型一个燃料油边舱燃油量 12t。根据《建设项目环境风险评价技术导则》(HJ169-2018)附录表 B.1 突发环境事件风险物质及临界量中 381 油类物质

(矿物油类,如石油、汽油、柴油等;生物柴油等)临界量为 2500t,则 Q=36/2500=0.0144<1,该项目环境风险潜势为 I。该项目环境风险潜势为 I,环境风险评价等级为简单分析。

根据《建设项目环境风险评价技术导则》(HJ/T 169-2018)附录 D, 危险物质数量与临界量比值(O)的计算公式为:

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q_1, q_2, \dots, q_n 一每种危险物质的最大存在总量,t; Q_1, Q_2, \dots, Q_n 一每种危险物质的临界量,t;

 $\mathcal{L}_1,\mathcal{L}_2,\dots,\mathcal{L}_n$

则本项目的 Q 值为:

$$Q = \frac{36}{2500} = 0.0144$$

根据《建设项目环境风险评价技术导则》(HJ/T 169-2018)中评价工作等级划分,本项目 Q<1,风险潜势为 I,可开展简单分析。

表 2.6.5-1 环境风险评价工作等级划分

环境风险潜势	IV、IV+	III	II	I
评价工作等级			111	简单分析

2.6.6 地下水环境影响评价工作等级

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016),本项目为红树林种植生态修复项目,不属于污染型建设项目,地下水环境影响评价项目类别为IV类项目,不开展地下水环境影响评价。

2.6.7 土壤环境影响评价工作等级

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018),本项目属于导则附录 A 中规定的其他行业,故土壤影响评价项目类别属于IV类。综上,根据导则第 6.2.2.3 条及表 4,本项目可不开展土壤环境影响评价。

2.6.8 生态环境影响评价工作等级

本项目属于涉海工程,根据《环境影响评价技术导则生态影响》(HJ 19-2022)的规定,本项目生态评价等级参照《海洋工程环境影响评价技术导则》

(GB/T19485-2014)确定。根据《海洋工程环境影响评价技术导则》(GB/T19485-2014)表2要求,生态评价等级定为1级,见表2.6.1-2。综上,本工程将生态环境影响评价等级定为1级。

2.7 评价范围

2.7.1 海洋环境影响评价范围

海洋工程的环境影响评价范围,主要由工程的地理位置、特点和建设规模,以及所在海区的自然环境条件和敏感目标情况而定,依据《海洋工程环境影响评价技术导则》(GB/T 19485—2014),各单项海洋环境影响评价范围的确定依据见表 2.7.1-1。

表 2.7.1-1 海洋环境影响评价范围的确定依据

单项评价内容	评价范围					
水动力环境(1级)	垂向(垂直于工程中心点潮流主流 向)评价范围	纵向(潮流主流向)评价范围				
小约万种境(1级)	一般不小于 5km	不小于一个潮周期内水质点可达到 的最大水平距离两倍				
水质环境(1级)	调查与评价范围应能覆盖建设项目的环境影响所及区域,并能充分流					
沉积物环境(2级)	测的需求;一般情况下应与海洋水质	或,并能充分满足环境影响评价与预 质、海洋生态和生物资源环境的现状 范围保持一致				
生态和生物资源环境 (1级)		拒离确定评价范围,扩展距离一般不km~30km				
地形地貌与冲淤环境 (1级评价)		沙响范围,一般应不小于水文动力 环 设项目地貌与冲淤环境特征的要求				

根据《海洋工程环境影响评价技术导则》(GB/T19485-2014)的技术要求,1 级评价项目的水质、海洋生态环境的调查和评价范围,扩展距离一般不能小于8km~30km。本工程位于广东湛江红树林国家级自然保护区、湛江麻章雷州湾地方级湿地自然公园、通明海海洋保护区、湛江市麻章区红树林,属生态环境敏感区。根据项目设计方案,工程施工内容主要包括淤泥开挖取土、淤泥回填、红树林种植等。本工程属于红树林生态修复工程,不在海域设置水工构筑物。结合项目海区的海洋功能区划和敏感目标情况,故确定海洋环境影响评价范围为以工程

边缘线为起点向外扩展 15 km 的海域范围,评价面积 518.50 km^2 。评价范围坐标详见表 2.7-1,评价范围见图 2.7.1-1。

表 2.7.1-2 海洋环境评级范围四至坐标表

序号	东经	北纬
1	110° 18'42.552"	21° 6'36.379"
2	110° 19'36.401"	21° 4'27.111"
3	110° 23'12.564"	20° 59'40.866"
4	110° 23'8.964"	20° 49'7.645"
5	110° 9'35.431"	21° 7'58.442"
6	110° 7'47.604"	21° 0'51.928"
7	110° 10'10.393"	20° 49'54.423"

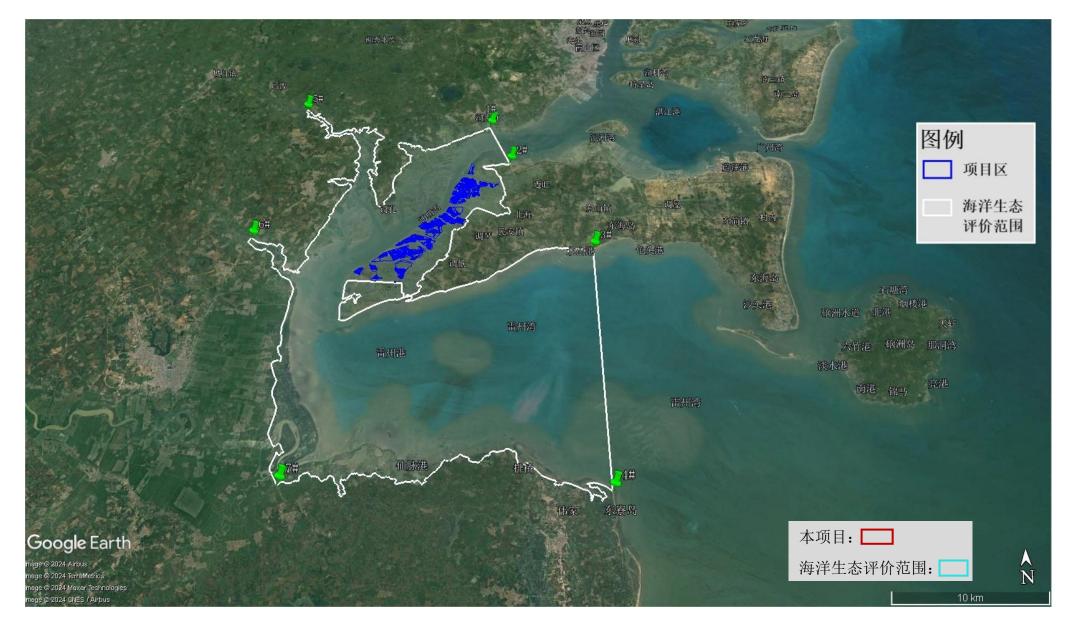


图 2.7.1-1 海洋环境评价范围图

2.7.2 地表水环境影响评价范围

按照《环境影响评价技术导则 地表水环境》(HJ 2.3-2018),本项目施工期水文要素影响评价等级为一级。评价范围与海洋环境评价范围一致,详见图 2.7.1-1。

2.7.3 环境空气影响评价范围

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),本项目环境空气评价等级为三级评价,三级评价不需要设置评价范围。

2.7.4 声环境影响评价范围

根据《环境影响评价技术导则 声环境》(HJ 2.4-2021),本项目声环境评价等级为二级,声环境评价范围为项目工程区界外 200m 范围,声环境评价范围见图 2.7.4-1。

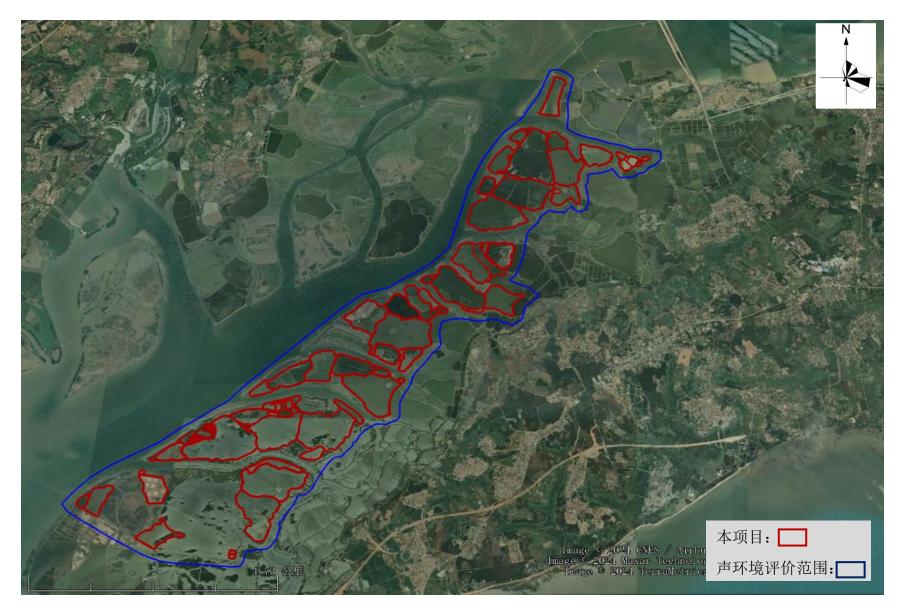


图 2.7.4-1 声环境评价范围图

2.7.5 环境风险影响评价范围

根据《建设项目环境风险评价技术导则》(HJ 169-2018),本项目环境风险评价等级为简单分析,重点分析船舶溢油风险对项目所在海域的影响,评价范围与海洋环境影响评价范围一致。

2.7.6 生态环境影响评价范围

根据《环境影响评价技术导则 生态影响》(HJ 19-2022)生态影响评价范围的确定原则,本项目涉海工程评价范围参照《海洋工程环境影响评价技术导则》(GB/T19485-2014)确定。本项目海洋生态环境影响评价等级为一级,评价范围为项目工程边界外扩1千米以内的区域,评价范围详见图 2.7.6-1。

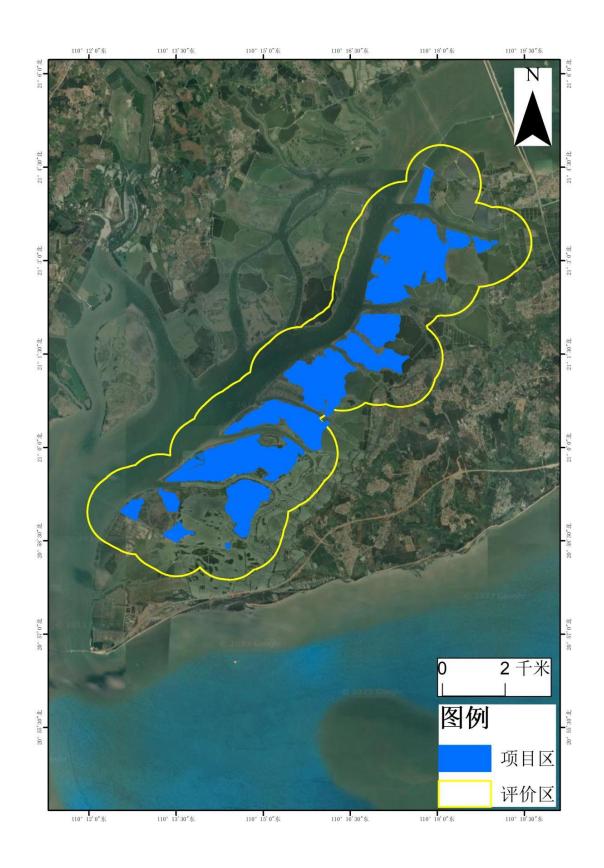


图 2.7.6-1 海洋生态环境评价范围图

55

2.7.7 小结

建设项目评价范围一览表见表 2.7.7-1。

表 2.7.7-1 评价范围一览表

序号		类别		评价等级	评价范围
		水文动力玩	不境	1级	
	海洋	海洋水质环	不境	1级] - 以工程边缘线为起点向外扩展 15km
	洋 环	海洋沉积物	环境	2 级	的海域范围
1	环境	海洋生态与生物	资源环境	1级	- 印护李公拉西
		地形地貌与冲	淤环境	1级	
2	施	施工期地表水环境 水文要素 影响型		一级	与海洋环境评价范围一致
3		环境空气	,	三级	不需设置大气环境影响评价范围
4	声环境		二级	项目工程边界外 200m 范围以内的区域	
5		环境风险		简单分析	与海洋环境评价范围一致
6		生态环境		1级	项目工程边界外扩 1 千米以内的区域

2.8 主要环境保护目标及社会活动关注区

根据现场踏勘和收资调查,结合《环境影响评价技术导则 生态影响》(HJ19-2022)、《海洋工程环境影响评价技术导则》(GB/T19485-2014)等对生态环境敏感保护目标的定义,及《广东省海洋功能区划(2011-2020 年)》、《广东省国土空间规划(2021-2035 年)》、《湛江市国土空间总体规划(2021—2035 年)》、《湛江市人民政府关于印发湛江市 "三线一单" 生态环境分区管控方案的通知》(湛府(2021)30 号)、《湛江市 2023 年"三线一单"生态环境分区管控成果更新调整成果》和广东省"三线一单"生态环境管控平台可知,本项目海洋环境影响评价范围内环境敏感区与环境保护目标主要有:海洋保护区、自然保护区、湿地公园、浅海养殖区等。且项目区位于生态保护红线内,未涉及永久基本农田。

本项目为红树林营造海洋生态修复工程,运营期不涉及噪声污染源,项目产生的噪声主要来自施工期的施工机械噪声。本项目位于声环境功能 1 类区域,声

环境保护目标噪声级增量在 3dB(A)以下,根据《环境影响评价技术导则 声环境》(HJ2.4-2021),声环境评价等级为二级。评价范围按项目周边 200m 考虑,本项目声环境评价范围内无环境敏感目标。

表 2.8.1-1 评价范围内环境保护目标

:	 敏感目标	心里 子 <i>石</i>	/U+b U+=	77 换 但 拉 画 老		
类型	名称	位置关系	保护目标	环境保护要求		
V- V/ /F I.A. F	通明海海洋保护区	项目位于	红树林及其生境	1.保护通明海红树林; 2.严格控制养殖污染和水体富营养化,防止外来物种入侵; 3.加强保护区海洋生态环境监测; 4.执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量 一类标准。		
海洋保护区	南渡河口海洋保护 区	西南侧,约 10.06km	海洋生态系统	1.保护东海岛海草床生态系统; 2.保护龙虾、石斑鱼、栉江珧等重要渔业品种; 3.严格控制养殖自身污染和水体富营养化,防止外来物种入侵; 4.加强渔港环境污染治理,生产废水、生活污水须达标排海; 5.执行 海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标 准。		
自然保护区	广东湛江红树林国 家级自然保护区	项目部分位于	红树林及其生境、鸟 类	1.生态保护红线内,自然保护地核心保护区原则上禁止人为活动,其他区域严格禁止开发性、生产性建设活动,在符合现行法律法规前提下,除国家重大战略项目外,仅允许对生态功能不造成破坏的有限人为活动 2.严格保护珊瑚礁、海草床等典型海洋生态系统分布区,自然景观,中华白海豚、鲎类等珍稀濒危海洋生物物种及重要海洋生物的洄游通道、产卵场、索饵场、越冬场、栖息地等各类重要海洋生态区域;		
湿地公园	湛江麻章雷州湾地 方级湿地自然公园	项目部分位于	红树林种群、湿地生 态系统	3. 在依法设立的各级自然保护区、湿地公园、重点湿地等特殊保护区域,应当依据法律法规规定和相关规划实施强制性保护,不得从事不符合主体功能区定位的各类开发活动,严格控制人为因素破坏自然生态。4. 在自然保护区的核心区禁止从事任何生产建设活动;在缓冲区,禁止从事除经批准的教学研究活动外的旅游和生产经营活动;在实验区,禁止从事除必要的科学实验、教学实习、参考观察和符合自然保护区规划的旅游,以及驯化、繁殖珍稀濒危野生动植物等活动外的其		

				他生产建设活动 5. 在湿地公园内,禁止开矿、采石、修坟以及生产性放牧等;禁止从事房地产、度假村、高尔夫球场等任何不符合主体功能定位的建设项目和开发活动;禁止法律法规禁止的活动或者行为 6. 国家湿地公园内,禁止开(围)恳、填埋或者排干湿地,禁止截断湿地水源;禁止挖沙、采矿;禁止倾倒有毒有害物质、废弃物、垃圾;禁止从事房地产、度假村、高尔夫球场、风力发电、光伏发电等任何不符合主体功能定位的建设项目和开发活动;禁止破坏野生动物栖息地和迁徙通道、鱼类洄游通道,滥采滥捕野生动植物7. 禁止非法移植、采挖、采伐红树林或者采摘红树林种子8. 禁止采挖珊瑚和破坏珊瑚礁9. 禁止擅自采集、加工、销售野生动植物及矿物质制品。
岸线	金牛岛	西侧,约 2.93km	渔业岸线、围海养殖 岸线等	/
	东海岛	占用部分	渔业岸线、围海养殖 岸线	J
 三场一通道	黄花鱼幼鱼保护区	项目占用	黄花鱼幼鱼	保护期为每年的3月1日至5月31日
	南海北部幼鱼繁育 场保护区	项目占用	幼鱼繁育场	保护期为 1~12 月
养殖	现状养殖鱼塘	项目位于	海水水质、生态环 境、养殖物种	/
管道	油气管道	北侧,约 0.5km	/	管道线路中心线两侧各 5 米范围内禁止取土、采石、用火、堆放重物、排放腐蚀性物质、使用机械工具进行发掘施工
	GDN07035	东南侧,约 8.44km	/	/
国控点位	GDN07015	南侧,约 3.76km	/	
农渔业区	雷州湾农渔业区	南侧,约 0.93km	海水水质、生态环 境、养殖物种	/

图 2.8.1-1 评价范围内环境保护目标分布图

图 2.8.1-2 评价范围内岸线分布图

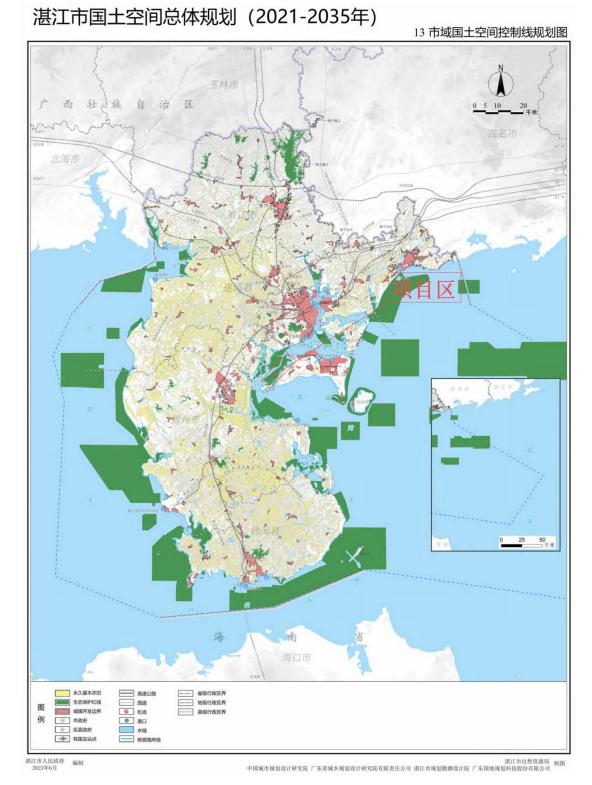


图 2.8.1-3 项目与湛江市国土空间控制线(永久基本农田、生态保护红线)位置关系图



图 2.8.1-4 项目与广东湛江红树林国家级自然保护区位置关系图

3 工程分析

3.1 建设项目概况

3.1.1 建设项目基本情况

3.1.1.1 项目组成及规模

项目名称: 湛江经开区红树林湿地生态修复系统治理项目

建设单位: 湛江开发区新月发展有限公司

建设性质:新建

总投资: 58060.28 万元。

环保投资: 520.2 万元 (占总投资 0.90%)

地理位置: 湛江东海岛西部,东雷高速以北,西湾村以东,红树林保护区西南。项目地理位置图见图 3.1.1-1。

主要建设内容:

本项目对东海岛红树林湿地进行生态修复和治理,包括地形改造、苗木种植、管护以及养殖设计等,总占地面积 3044.9 公顷,整个项目营造红树林规模为 683.37 公顷(约 10249.61 亩)。项目分两期建设,其中,一期营造红树林规模为 9.87 公顷(约 148.11 亩),二期营造红树林规模为 673.50 公顷(约 10102.5 亩)。

本项目一期占地面积 16.18 公顷, 其中种植红树林 9.87 公顷, 水道 0.95 公顷, 光滩 1.08 公顷, 红树林疏林地 4.28 公顷。

本项目二期养殖塘水域面积 1494.53 公顷(约 22417.95 亩),实际种植红树林面积 673.50 公顷(约 10102.5 亩)。

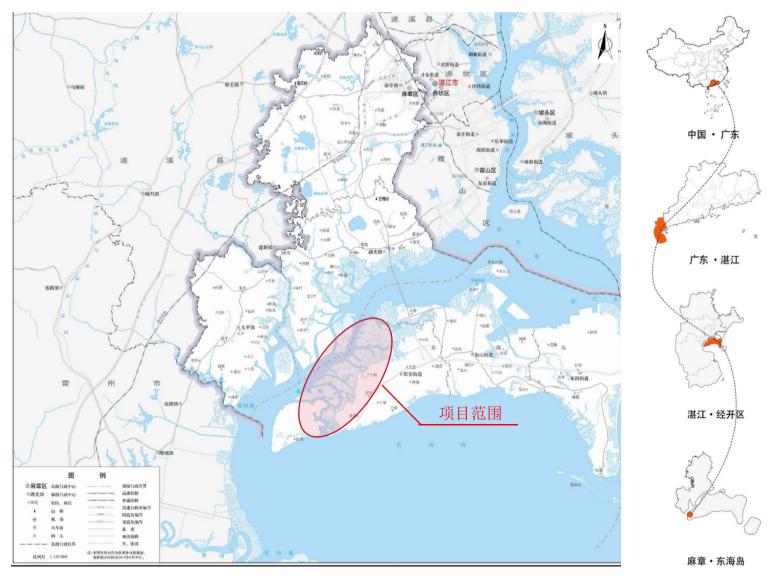


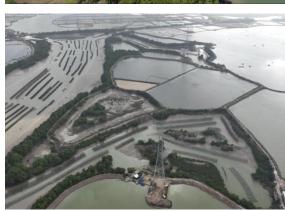
图 3.1.1-1 项目地理位置图

3.1.1.2 项目生态现状

1、区域内以大面积的水域为主,包含大量养殖塘和少量滩涂

红树林保护区域内主要为大面积的水域,其中包含红树林、滨水植被、大量养殖塘和少量滩涂,周边有较多村庄聚集。

现状水域来源为海洋输入,由闸门控制。部分水域由于养殖塘的建设,水体颜色发生了改变,形成了不同颜色的水域肌理。现状滩涂主要集中在红树林群落区域。


受红树林和养殖塘使用的影响,绝大部分的浅滩仅承担当地居民捕捞鱼虾、 采摘以及养护红树林的落脚点。现状养殖塘已具备相对成熟的生产体系,主要 经营海产品的养殖输出,业态单一但规模较大。

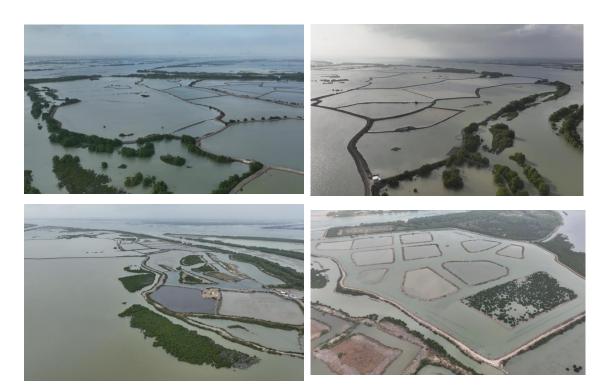


图 3.1.1-2 养殖塘生态状况

2、区域红树林分布及养殖塘现状

本次开展红树林营造的区域位于红树林保护区内,地块属性为养殖塘。塘内和塘外水道中分布有现状生长红树林。修复区红树林主要为白骨壤、红海榄、桐花树等本土树种,靠海侧养殖塘塘埂外分布了较茂盛的无瓣海桑,另外部分塘埂上有半红树海漆、黄槿等,受养殖塘影响,修复区红树林存在生境破碎化、生态系统退化问题。

养殖塘内红树林以斑块或条带状为主,斑块破碎明显,部分区域呈零星分布 状,养殖塘修复区内养殖塘红树林分布见下表。

序号	序号 塘编号	树种	生长标高	面积(hm²)	实测水位	红树林淹水深
万 与	/ 指/ 分	1/ህ ለግ	(m)		(m)	度 (m)
1	A03	红海榄	1.78~2.38	1.78	1.92	-0.46~0.14
2	A05	红海榄、白骨壤	1.75~2.10	1.25	2.64	0.54~0.89
3	A06	红海榄、白骨壤	1.90~2.36	2.72	2.22	-0.14~0.32
4	A07	红海榄、白骨壤	1.80~2.10	2.77	2.49	0.39~069
5	A09	红海榄、白骨壤、 桐花树	1.75~1.95	2.15	2.55	0.60~0.80
6	B01	红海榄	1.41~1.50	0.32	1.87	0.37~0.46

表 3.1.1-1 养殖塘内红树林分布情况表

7	В03	现状已基本退化 消失	1.58~1.66	0.05	1.95	0.29~0.37
8	B08	红海榄、白骨壤	1.55~1.81	0.17	1.95	0.14~0.40
9	B09	红海榄、白骨壤	1.51~2.21	1.33	2.10	-0.11~0.59
10	B13	红海榄	1.51~1.56	0.13	1.83	0.27~0.31
11	C02	现状已基本退化 消失	1.13~1.44	1.69	2.14	0.70~1.01
12	C03	红海榄	1.72~1.98	7.22	2.50	0.52~0.78
13	C05	红海榄、白骨壤	1.71~2.25	3.21	2.13	-0.12~0.42
14	C06	红海榄、白骨壤、 桐花树	1.67~2.14	3.49	1.98	-0.16~0.31
15	C09	红海榄	1.92~2.17	1.79	2.39	0.22~0.47
16	C10	红海榄、白骨壤	1.89~2.42	4.67	2.36	-0.06~0.47

通过测量数据可以发现现状养殖塘内红树林主要为红海榄、桐花树和白骨壤,在正常养殖条件下,大部分现状红树林基本处于长期淹水状态,其中红海榄淹水深度在-0.46~0.89m之间,桐花树淹水深度在-0.16~0.80m之间,白骨壤淹水深度在-0.14~0.69m之间。养殖塘 A03、A06、B09、C05、C06 及 C10 中有部分红海榄、桐花树及白骨壤处于露出水面状态。

A03 号塘红树品种为红海榄,总面积 1.78ha,集中分布在塘南侧和中部,红树林呈片分布,树高约 1.8m,长势好,郁闭度为 75%。

A05 号塘红树品种为红海榄、白骨壤,以白骨壤为主,总面积 1.25ha,集中分布在塘南侧和西侧中部,呈小斑块和条带分布,树高约 1.7m,塘南侧白骨壤出现较大面积死亡现象,红树林郁闭度为 26%。

A06 号塘红树品种为红海榄和桐花树,总面积 2.72ha,集中分布在塘北侧和东侧,呈大斑块分布,树高约 1.8m,长势好,斑块郁闭度为 95%。

A07号塘红树品种为红海榄、白骨壤,以红海榄为主,总面积 2.77ha,分布在塘东侧和南侧,树高约 1.5m,呈小斑块和条带分布,长势一般,红树林郁闭度为 45%。

A09 号塘红树品种为红海榄、白骨壤、桐花树,以白骨壤为主、红海榄次之、桐花树最少,总面积 2.15ha,分布在西侧中部及南侧,呈片分布和小斑块分布,树高约 1.5m,长势一般,红树林郁闭度为 36%。

B01 号塘红树品种为红海榄,总面积 0.32ha,呈小斑块分布,树高约 1.65m,长势较好,郁闭度为 76%。

B03 号塘三调红树林 0.05ha, 剩余零星几颗红海榄, 原三调红树林已基本退化消失。

B08 号塘红树品种为红海榄和桐花树,总面积 0.17ha,集中分布在塘西侧,呈小斑块和条带分布,树高约 1.9m,红树林郁闭度为 67%。

B09 号塘红树品种为红海榄、白骨壤,总面积 1.33ha,呈破碎小斑块分布,主要分布在塘北侧,树高约 2.0m,长势一般,郁闭度为 33%。

B13 号塘红树品种为红海榄,总面积 0.13ha,现状红树林呈破碎化小斑块状,树高约 1.7m,郁闭度为 52%。

C02 号塘三调红树林 1.69ha,剩余零星几块小斑块的红海榄,原三调红树林已基本退化消失。

C03 号塘红树品种为红海榄,总面积 7.22ha,现状红树林呈连片及斑块状分布在塘北侧及南侧,树高约 2.0m,郁闭度为 90%,但出现较大面积死亡现象。

C05 号塘红树品种为红海榄、白骨壤,总面积 3.21ha,现状红树林呈连片或斑块状,分布在塘西北侧,树高约 1.6m,郁闭度为 65%。

C06 号塘红树品种为红海榄、白骨壤、桐花树,以红海榄为主、白骨壤次之、桐花树最少,总面积 3.49ha,分布在东北侧侧,呈片斑块分布,树高约 1.8m,长势较好,红树林郁闭度为 77%。

C09 号塘红树品种为红海榄,总面积 1.79ha,呈大斑块分布,主要分布在塘南侧,树高约 2.0m,长势一般,郁闭度为 53%。

C10 号塘红树品种为红海榄、白骨壤,总面积 4.67ha,现状红树林呈片状及大斑块状分布,主要分布在塘东南及西北两侧,树高约 1.80m,郁闭度为 64%。

项目区养殖塘内红树植物以红海榄、白骨壤和桐花树为主,其中红海榄数量最多,白骨壤次之,桐花树数量较少,仅个别塘有分布。塘内红树林斑块破碎化明显,以大、小斑块分布为主。虽然塘内红树林斑块破碎,但塘内红树林生长状况良好,叶片颜色鲜艳,枝条强壮,少有病虫害,大部分养殖塘内部未发现死亡植株。

大多数养殖塘内部现状红树林面积相比三调数据有所减少,特别是 B03、C02 号塘内红树林面积出现严重退化,A05、C03 出现较大面积的死亡现象,初步分析红树林退化及死亡原因主要有自然因素和人为干扰双重影响导致。

自然因素方面由于养殖塘内部为保持养殖水域水深,塘内滩面均属于长期淹

水状态,红树林种子失去了生长条件,所以塘内红树林无法获得自然演替更新。而原有红树林随着树龄增长、病虫害、风暴潮等灾害影响而逐步退化,导致红树林数量减少。

人为因素影响主要是由于前些年养殖户红树林保护意识淡薄,在池塘改造和养殖、捕捞过程中破坏了现有红树林,导致红树林面积减少,此外原有养殖塘内水位控制不合理,养殖户仅追求养殖利益,导致塘内水位过高,红树林长期淹水,也是红树林退化的重要原因,其中 B03、C02 塘红树林退化严重及 A05、C03 出现较大面积的死亡现象主要原因是养殖活动破坏导致。近几年随着红树林保护相关法律法规的完善,监管力度逐年加大,加之群众保护红树林意识的提高,近几年红树林退化现象明显减缓。

3、养殖塘闸口现状

项目一期包括养殖塘 3 口,二期包含养殖塘 41 口,面积从几公顷至 100 多公顷不等,每口塘依靠水闸与外海进行水交换。水闸为手动启闭,闸门尺寸在 1~12m 之间,每个月大潮期间(约 8~12 天)涨潮时打开水闸换水,平潮时关闭水闸,维持塘内水位在 1~3m 左右,闸门关闭后,塘内水位基本恒定。

项目二期养殖塘闸门基本情况如下:

A01 号塘水域面积 31.00hm², 通过西北侧进行海水交换。

A02 号塘水域面积 9.81hm²,通过塘南侧水闸进行海水交换,水闸为 3 孔水闸,闸孔宽度为 1.00m,底高程为 0.50m。

A03 号塘水域面积 21.79hm²,通过塘西南侧水闸进行海水交换,水闸为 5 孔水闸,闸孔宽度为 0.92m,底高程为-0.06m。

A04 号塘水域面积 12.76hm²,通过塘西南侧水闸进行海水交换,水闸为 8 孔水闸,闸孔宽度为 1.10m,底高程为 0.55m。

A05 号塘水域面积 96.24hm²,通过塘西侧水闸进行海水交换,水闸分为两级,

- 一级水闸为塘侧水闸,水闸为 12 孔水闸,闸孔宽度为 0.98m,底高程为 0.45m;
- 二级水闸为海侧水闸,水闸为 4 孔水闸,闸孔宽度为 2.09m,底高程为 0.45m。

A06 号塘水域面积 76.00hm², 通过塘西侧水闸进行海水交换, 水闸为 5 孔水闸, 闸孔宽度为 1.05m, 底高程为 0.90m。

A07 号塘水域面积 76.02hm²,通过塘东南侧水闸进行海水交换,水闸为 9 孔水闸,闸孔宽度为 1.10m,底高程为 0.97m。

A08 号塘水域面积 15.75hm², 通过塘东北侧水闸进行海水交换, 东北侧水闸为 3 孔水闸, 闸孔宽度为 1.14m, 底高程为 0.77m。

A09 号塘水域面积 51.39hm²,通过塘东侧水闸进行海水交换,东侧水闸为 5 孔水闸,闸孔宽度为 1.11m,底高程为 0.77m。

A10 号塘水域面积 23.31hm²,通过塘东南侧水闸进行海水交换,水闸为 3 孔水闸,闸孔宽度为 1.00m,底高程为 0.77m。

A11 号塘水域面积 26.66hm², 通过塘东侧和西侧水闸进行海水交换, 东侧水闸为 3 孔水闸, 闸孔宽度为 1.10m, 底高程为 0.69m; 西侧水闸为 5 孔水闸,闸孔宽度为 1.05m,底高程为 0.73m。

A12 号塘水域面积 2.46hm², 通过塘西北侧缺口进行海水交换, 缺口宽为 14.00m, 底高程为-0.17m。

A13 号塘水域面积 9.74hm²,通过塘北侧和西侧水闸进行海水交换,北侧水闸为 2 孔水闸(1 个孔废弃),闸孔宽度为 1.12m,底高程为-0.29m;西侧水闸为 1 孔水闸,闸孔宽度为 1.10m,底高程为-0.29m。

A14 号塘水域面积 1.11hm²,通过塘南侧水闸进行海水交换,水闸为 1 孔水闸,闸孔宽度为 1.05m,底高程为 0.34m。

A15 号塘水域面积 1.43hm²,通过塘南侧水闸进行海水交换,水闸为 1 孔水闸,闸孔宽度为 1.18m,底高程为 0.37m。

B01 号塘水域面积 85.42hm²,通过塘北侧和西侧水闸进行海水交换,北侧 1#水闸为 4 孔水闸,闸孔宽度为 0.91m,底高程为 0.45m;北侧 2#水闸为 4 孔水闸,闸孔宽度为 0.91m,底高程为 0.45m;北侧 3#水闸为 1 孔水闸,闸孔宽度为 1.30m,底高程为 0.05m;西侧 1#水闸为 4 孔水闸,闸孔宽度为 1.14m,底高程为 0.77m;西侧 2#水闸为 4 孔水闸,闸孔宽度为 1.25m,底高程为 1.27m。

B02 号塘水域面积 3.88hm²,通过塘东南侧水闸进行海水交换,水闸为 2 孔水闸,闸孔宽度为 0.94m,底高程为 0.79m。

B03 号塘水域面积 66.13hm²,通过塘西北侧和东南侧水闸进行海水交换,西北侧水闸为 5 孔水闸,闸孔宽度为 1.10m,底高程为 0.66m;东南侧水闸为 2 孔水闸,闸孔宽度为 1.08m,底高程为 0.34m。

B04 号塘水域面积 32.68hm²,通过塘东南侧水闸进行海水交换,水闸为 5 孔水闸,闸孔宽度为 1.10m,底高程为 0.74m。

- B05 号塘水域面积 11.88hm²,通过塘东南侧水闸进行海水交换,水闸为 3 孔水闸,闸孔宽度为 1.10m,底高程为-0.05m。
- B06 号塘水域面积 24.41hm²,通过塘西侧水闸进行海水交换,水闸为 4 孔水闸,闸孔宽度为 0.98m,底高程为 0.43m。
- B07 号塘水域面积 25.38hm²,通过塘东南侧水闸进行海水交换,水闸为 8 孔水闸,闸孔宽度为 1.27m,底高程为 0.24m。
- B08 号塘水域面积 40.11hm²,通过塘东南侧水闸进行海水交换,水闸为 3 孔水闸,闸孔宽度为 0.90m,底高程为-0.18m。
- B09 号塘水域面积 109.35hm², 通过塘东南侧水闸进行海水交换, 1#水闸为7 孔水闸,闸孔宽度为 0.90m,底高程为 0.15m; 2#水闸为 8 孔水闸,闸孔宽度为 0.85m,底高程为 0.20m。
- B10 号塘水域面积 67.10hm²,通过塘北侧水闸进行海水交换,1#水闸为 6 孔水闸,闸孔宽度为 0.95m,底高程为 0.21m; 2#水闸为 4 孔水闸,闸孔宽度为 0.90m,底高程为 0.34m; 3#水闸为 4 孔水闸,闸孔宽度为 0.90m,底高程为 0.38m。
- B11 号塘水域面积 34.42hm²,通过塘北侧水闸进行海水交换,1#水闸为 2 孔水闸,闸孔宽度为 0.86m,底高程为 0.65m; 2#水闸为 3 孔水闸,闸孔宽度为 0.95m,底高程为 0.41m; 3#水闸为 9 孔水闸,闸孔宽度为 1.00m,底高程为 0.49m。
- B12 号塘水域面积 31.84hm²,通过塘东北侧和北侧水闸进行海水交换,东北侧水闸为 3 孔水闸,闸孔宽度为 1.02m,底高程为 0.24m;北侧水闸为 5 孔水闸,闸孔宽度为 1.02m,底高程为 0.24m。
- B13 号塘水域面积 29.66hm²,通过塘西北侧和东南侧水闸进行海水交换,西北侧水闸为 3 孔水闸,闸孔宽度为 1.02m,底高程为 0.35m;北侧水闸为 5 孔水闸,闸孔宽度为 1.02m,底高程为 0.35m。
- B14 号塘水域面积 8.55hm²,通过塘东南侧水闸进行海水交换,水闸为 2 孔水闸,闸孔宽度为 1.00m,底高程为 0.03m。
- C01 号塘水域面积 10.91hm²,通过塘北侧水闸进行海水交换,水闸为 2 孔水闸,闸孔宽度为 0.90m,底高程为 0.21m。
- C02 号塘水域面积 7.55hm²,通过塘东北侧水闸进行海水交换,水闸为 2 孔水闸,闸孔宽度为 1.00m。
 - C03 号塘水域面积 72.70hm², 通过塘东侧和东南侧水闸进行海水交换, 东侧

水闸为4 孔水闸,闸孔宽度为1.05m;东南侧水闸为3孔水闸,闸孔宽度为1.00m。

C04 号塘水域面积 6.72hm²,通过塘东北侧水闸进行海水交换,水闸为 1 孔水闸,闸孔宽度为 1.00m。

C05 号塘水域面积 81.08hm²,通过塘东南侧和南侧水闸进行海水交换,东南侧水闸为 7 孔水闸,闸孔宽度为 1.50m,底高程为 0.26m;南侧水闸为 4 孔水闸,闸孔宽度为 1.27m,底高程为 0.24m。

C06 号塘水域面积 97.22hm²,通过塘南侧水闸进行海水交换,1#水闸为 6 孔水闸,闸孔宽度为 0.95m,底高程为 0.21m; 2#水闸为 4 孔水闸,闸孔宽度为 0.90m,底高程为 0.34m。

C07 号塘水域面积 127.22hm²,通过塘东侧、北侧及西侧水闸进行海水交换, 东侧水闸为 4 孔水闸,闸孔宽度为 0.98m,底高程为 1.04m; 北侧 1#水闸为 8 孔水闸,闸孔宽度为 0.90m,底高程为 0.45m; 北侧 2#水闸为 2 孔水闸,闸孔宽度为 0.80m,底高程为 0.45m; 北侧 3#水闸为 2 孔水闸,闸孔宽度为 0.8m,底高程为 0.05m; 西侧水闸为 6 孔水闸,闸孔宽度为 0.93m,底高程为 1.21m。

C08 号塘水域面积 1.67hm²,通过塘西侧水闸进行海水交换。

C09 号塘水域面积 22.89hm²,通过塘西北侧水闸进行海水交换,水闸为 1 孔水闸,闸孔宽度为 2.52m,底高程为 0.83m。

- C10 号塘水域面积 21.70hm²,通过塘西北侧水道进行海水交换。
- C11 号塘水域面积 18.46hm², 该塘为半塘。
- C12 号塘水域面积 3.94hm²,通过塘西北侧水闸进行海水交换,水闸为 1 孔水闸,闸孔宽度为 1.10m,底高程为 1.30m。

项目区养殖塘水闸以砖砌水闸为主,少数为混凝土水闸,水闸普遍采用木质闸板,水闸主体结构稳定,满足使用需求,少部分水闸闸板老旧、破损,需要修缮。

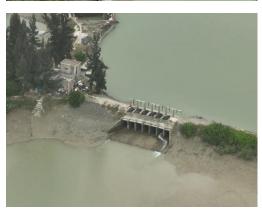


图 3.1.1-3 养殖塘闸口现状

3.1.2 建设项目工程内容

本项目营造红树林规模为 683.37 公顷(约 10249.61 亩),建设内容包括地形改造、红树林种植、管护以及养殖设计等。总种植红树林 5457501 株。项目分两期建设,其中,一期营造红树林规模为 9.87 公顷(约 148.11 亩),种植红树林 78855 株;二期营造红树林规模为 673.50 公顷(约 10102.5 亩),种植红树林 5378646 株。本项目总工程量见下表。

表3.1.2-1 项目总工程量一览表

序号	项目内容	规格	单位	数量	备注
_	红树林营造一		公顷	9.87	红树林设计种植斑块面积
	期		亩	148.1	1 红树怀以口打恒班为曲仍
1	红树林种植		m ²	98740.17	
1.1	桐花树	中苗: 株高 40~65cm;	株	19077	含 15%补植株数,种植间距
1.1	վերերին	基径 0.8~1.5cm	7/K	17077	1.2×1.2m
1.2	红海榄	中苗: 株高 60~90cm;	株	11053	含 15%补植株数,种植间距
1.2	22149/196	基径 1.0~1.5cm	7/1	11033	1.2×1.2m
1.3	白骨壤	中苗: 株高 50~75cm,	株	48725	含 15%补植株数,种植间距
1.3	口月坡	基径 0.8~1.5cm	休 48725		1.2×1.2m

1.3	苗木二次转运		株	78855	
2	管理维护		年	3	
2.1	巡护清理		万 m ²	9.87	管护期三年
2.2	病虫害防治		万 m ²	9.87	
=	红树林营造二		公顷	673.50	红树林设计种植斑块面积
_	期		亩	10102.50	- 红树怀仅月杆组处外面仍
1	地形改造				养殖塘高程改造
1.1	开挖淤泥		万 m³	386.50	
1.1.1	水陆挖机开挖淤泥		万 m³	316.75	水陆挖机开挖,转运三次,除了 A13、B01、B03、B05、B06、B08 塘,剩余的养殖塘均采用水陆挖机开挖
1.1.2	绞吸船开挖淤 泥		万 m³	69.75	绞吸船开挖的养殖塘为 A13、 B01、B03、B05、B06、B08 塘
1.2	回填淤泥		万 m³	386.50	含 15%的设计沉降及流失量, 水陆挖机回填整平
1.2.1	水陆挖机回填淤泥		万 m³	316.75	水陆挖机回填整平,转运三次,除了 A13、B01、B03、B05、B06、B08 塘,剩余的养殖塘均采用水陆挖机回填整平
1.2.2	绞吸船回填淤 泥		万 m³	69.75	绞吸船吹填的养殖塘为 A13、 B01、B03、B05、B06、B08 塘
1.3	松木桩护土措 施	直径 100mm, 长 5.0m, 间距 500mm	m	21092	
1.4	养殖塘闸口改 造		个	60	
2	红树林种植		万 m ²	673.50	
2.1	白骨壤	中苗: 株高 50~75cm , 基径: 0.8~1.5cm	株	1699444	含 15%补植株数,种植间距 1.2×1.2m
2.2	红海榄	中苗: 株高 60~90cm , 基径: 1.5~2.0cm	株	2538865	含 15%补植株数, 种植间距 1.2×1.2m
2.3	桐花树	中苗: 株高 40~65cm , 基径: 0.8~1.5cm	株	601115	含 15%补植株数,种植间距 1.2×1.2m
2.4	秋茄	中苗: 株高 50~80cm; 基径 1.5~2.0cm	株	539222	含 15%补植株数,种植间距 1.2×1.2m
2.5	苗木二次转运		株	5378646	
2.6	固定材料	直径 2cm, 长 2m	根	5378646	竹竿
3	管理维护		年	3	
3.1	巡护清理		万 m ²	673.50	管护期三年
3.2	病虫害防治		万 m²	673.50	
3.3	保护标志牌		块	82	0.5m×0.8m 不锈钢板,配支架

3.1.3 项目总平面布置

本项目位于湛江经济技术开发区东海岛西部养殖塘区域,为退塘还林项目,拟形成以红树林种植区、养殖区交错的布局,保证水系联通、满足养殖、红树林生长及水鸟等生物觅食需求。本项目总占地面积 3044.9 公顷,整个项目营造红树林规模为 683.37 公顷(约 10249.61 亩)。项目分两期建设,其中,一期营造红树林规模为 9.87 公顷(约 148.11 亩),二期营造红树林规模为 673.50 公顷(约 10102.5 亩)。项目总平面技术指标表见表 3.1.3-1,项目总平面布置图见图 3.1.3-2,一期工程平面布置图见图 3.1.3-2,一期工程各分区平面布置图见附图 1~2,二期工程平面布置图见图 3.1.3-3,二期工程各分区平面布置图见附图 3~36。

表 3.1.3-1 项目总平面技术指标表

序号	项目	单位	指标	备注
	红树林营造一期	公顷	16.18	一期总占地面积
1	红树林营造区	公顷	9.87	
2	水道	公顷	0.95	
3	光滩	公顷	1.08	
4	红树林疏林地	公顷	4.28	
二	红树林营造二期	公顷	1494.53	
1	养殖塘水域面积	公顷	1494.53	水域面积按养殖塘合理水面高度进行测量,塘 基到水面垂直高度约 40 厘米
2	养殖塘营造设计面积	公顷	1459.79	水域面积与现有红树林面积之差
3	红树林实际种植面积	公顷	673.50	
4	三调现有红树林面积	公顷	28.20	
5	现有红树林疏林地面积	公顷	6.54	三调范围外的现有红树林
6	养殖水域面积	公顷	786.29	改造后养殖区面积、水深 0.4-3.2m

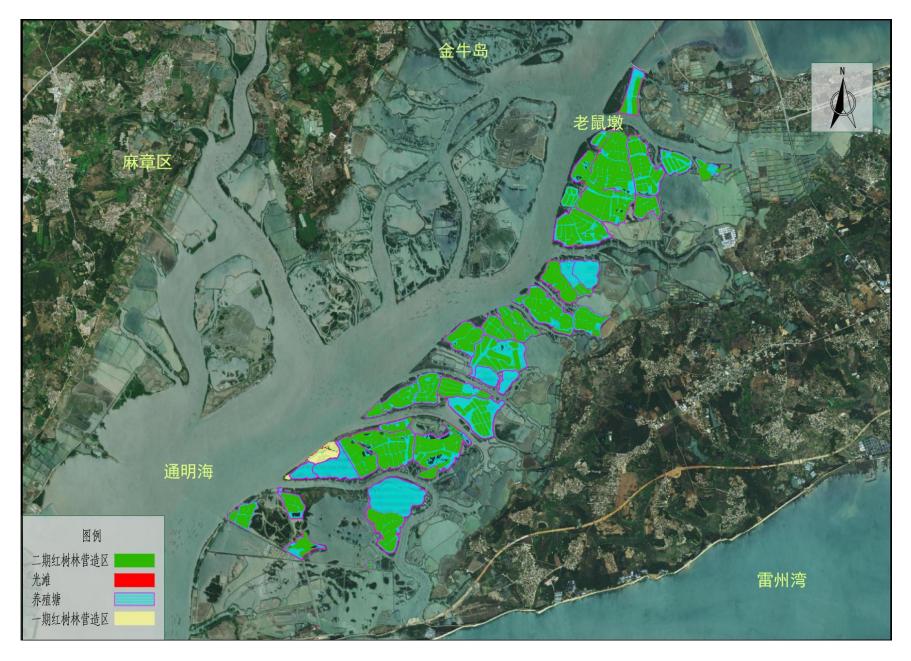


图 3.1.3-1 项目总平面布置图

1、一期工程

本项目一期占地面积 16.18 公顷, 其中种植红树林 9.87 公顷, 水道 0.95 公顷, 光滩 1.08 公顷, 红树林疏林地 4.28 公顷。

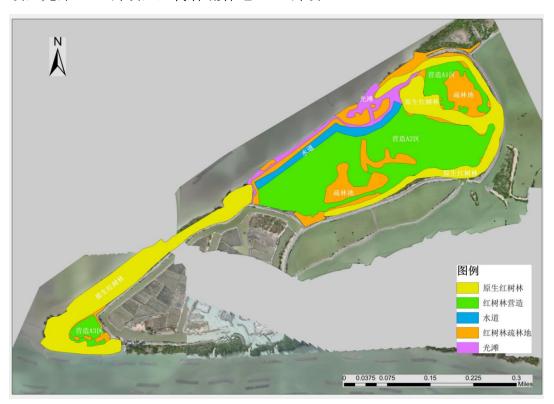


图 3.1.3-2 项目一期总平面布置图

项目一期技术指标表如下表所示:

表 3.1.3-1 项目一期技术指标表

序号	项目	单位	指标
_	红树林营造一期	m ²	119021.94
1	红树林营造区	m ²	98740.17
1.1	营造 A1 区	m ²	10377.98
1.2	营造 A2 区	m ²	83393.77
1.3	营造 A3 区	m ²	4968.42
2	水道	m ²	9529.19
3	光滩	m ²	10752.58

2、二期工程

本项目二期涉及养殖塘水域面积 1494.53 公顷,实际种植红树林面积 673.50 公顷(10102.50 亩)。

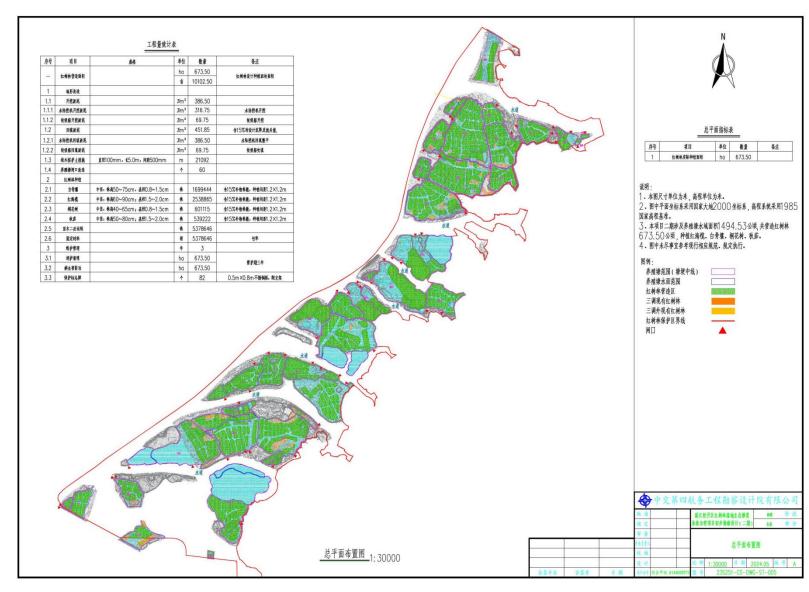


图 3.1.3-3 项目二期总平面布置图

序号 项目 单位 指标 备注 水域面积按养殖塘合理水面高度进行 养殖塘水域面积 1 公顷 1494.53 测量, 塘基到水面垂直高度约 40 厘米 养殖塘营造设计面积 水域面积与现有红树林地面积之差 2 公顷 1459.79 红树林实际种植面积 3 公顷 673.50 三调现有红树林面积 4 公顷 28.20 现有红树林疏林地面 5 公顷 三调范围外的现有红树林 6.54 积

786.29

改造后养殖区面积、水深 0.6-2.3m

表 3.1.3-2 项目二期技术指标表

3.1.4 项目设计方案

6

3.1.4.1 红树林营造区域确定

养殖水域面积

- 1、红树林营造适宜性评价
- (1) 红树林种植适宜条件

红树林种植区选址应遵循以下条件:

- 1)种植区选址应与区域发展规划以及邻近社区的民众海洋开发活动相符合,并获得当地政府、社区公众的支持:
- 2) 最冷月平均气温低于 7.5℃的地区不宜种植红树林,但可在引种驯化成功后开展红树林种植;
 - 3)以河口、内湾(湖)风浪较平静、平缓的滩涂为宜;

公顷

- 4) 红树林的宜林滩涂高程宜介于平均海平面(或稍上)与回归潮平均高潮位之间:
 - 5)恢复地以淤泥质滩涂为宜:
 - 6)恢复地海水盐度以 2‰~33‰为宜。
 - (2) 红树林修复适宜性分析
- 1)项目所在地位于湛江东海岛西部,东雷高速以北,西湾村以东,红树林的防浪护岸和提高海域生产力的功能和作用已获得政府和附近居民的认可,当地政府和公众全力支持开展红树林种植。
 - 2) 湛江地处东亚南部, 纬度低, 日照强, 且东南西三面受海洋围抱, 故终

年高温、长夏无冬、春早秋迟。温度的年变化不大,日变化也小。多年平均气温 23.5℃,多年平均月最高气温,33.7℃多年平均月最低气温 9.5℃。温度高避免 了极寒天气对嗜热红树的毁来性打击。

3)项目所在地区湛江濒临热带海洋,常受海洋暖湿气流影响,具有相对充足的水汽来源和水汽输送条件,湛江地区年降水量相对丰富,各月均有降水。年内雨水主要集中在雨季(4~10月),占全年雨量的88.4%;冬半年(11~翌年3月)降水只占全年的11.6%。

雨量对红树林并无直接影响,但雨水及河水由陆地流入海洋时,会改变红树群落生境的水域的盐度,使生于海湾及河口的种类有明显区别,在河口及潮水能涨到的河流下游,水的盐分较低的红树群落的确是不同于海水经常浸润的红树群落。

- 4)项目区营造区位于养殖塘内,地势相对平坦,周围有塘埂围蔽,水动力相对较弱,湾内风浪较小,可满足种植红树林生长的需要。
 - 5)项目区滩涂为淤泥质岸滩,水体盐度平均22%左右,适宜红树生长。

综上所述,本项目选址具有相应的适宜性,林地选取及布局符合《红树林生态修复工程评价技术规程》中的"养殖塘造林"要求;取土均为就地取土,就地消纳平衡,对外环境影响较小。

2、养殖塘内红树林种植面积确定

养殖塘内现有滩面高程与红树林宜林滩面高程的差值是确定红树林种植比例的主要依据,差值越小,挖填方量越小,单位工程造价越低,塘内可以种植红树林的面积就越大。

根据相关研究成果,养殖塘内种植红树林的比例介于 30~60%的情况下,红树林种养耦合的效益较好。

根据《湛江市红树林保护区内红树林营造补偿方案》中相关规定,原则上红树林实际种植面积不低于养殖塘面积的 50%。通过和养殖户沟通,考虑后期养殖的适宜性,养殖户要求养殖水域面积不低于养殖塘面积的 50%,综合考虑,在高程适宜塘内,红树林实际种植面积占养殖塘总营造设计面积 50%~60%左右,现状塘内高程较低的塘,红树实际林种植面积占 30%~45%,大部分塘内修复后红树林实际种植面积约占塘总营造设计面积的 50%。

少部分养殖塘红树林实际种植面积达不到 50%的原因主要如下:

- (1) 养殖塘养殖户要求预留养殖面积大于 50%;
- (2) 养殖塘的塘底高程太低,改造到适合种植红树林的高程时挖填方量太大,建设成本太高且开挖泥量不足以将占比 50%的红树林营造区域高程填至合适种植的高程,做不到土方平衡;
- (3)养殖塘内现有红树林占比较高,剩余区域不足以布置 50%的红树林营造区域。

3.1.4.2 地形改造设计

1、一期项目

根据现场勘测高程数据,红树林营造区滩面高程在 1.8~2.0m 之间,地块地势中间高,四周低,呈微坡趋势,有利于退潮时退水,不积水。地块西北侧有一条约 30 米宽的现状水道。

红树林营造区现状裸滩高程稍高于周边红树林分布的下限高程,其次裸滩周边红树林生长较好,考虑保护原生红树林,不宜进行机械挖填土方。该区域不做地形改造,选用适宜的红树植物,直接原泥面种植即可。

2、二期项目

项目区地形改造主要通过将养殖水域区域土方开挖转运或吹填至种植区内, 改造种植区高程以适应红树林生长,同时降低养殖水域区域高程,提高养殖水域 水深。种植地块宜平整,并避免局部积水过深,更利于红树植物生长。

退塘还林项目区总面积为 1494.53 公顷,营造红树林 673.50 公顷,平面布置上应形成红树林、养殖水域交错的布局。根据养殖塘高程和水闸改造,同时满足养殖塘内红树林生长和养殖需求。

根据项目区养殖塘现状,制定不同的地形改造方案:地形改造采用水陆两用挖掘机和绞吸式挖泥船进行施工。其中养殖塘 A13、B01、B03、B05、B06、B08采用绞吸式挖泥船进行施工,其他养殖塘采用水陆两用挖掘机。

每口养殖塘内地形改造所需土方来自养殖水域开挖土,养殖水域走向应保障潮水畅通,养殖水域宽约 20~35m (满足养殖户养殖用水需求),改造后养殖水域水深普遍在 0.6~2.3m 之间,满足养殖需求。每口塘土方自我平衡,无需外运或外抛。

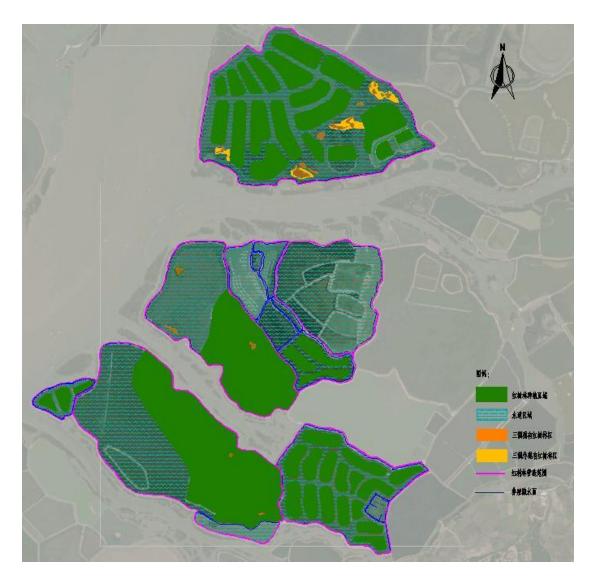


图 3.1.4-1 典型塘平面布置图

(1) 塘内水位确定原则

对于二期工程塘内水位设计分以下两种情况:

①有现状红树林生长的养殖塘:通过现场踏勘和测量数据可以发现现状养殖塘内红树林主要为红海榄、白骨壤和桐花树,大部分都处于长期淹水状态,少部分露出水面,其中红海榄淹水深度在-0.46~0.89m之间,白骨壤淹水深度在-0.14~0.69m之间,桐花树淹水深度在-0.16~0.80m之间。个别塘中长期淹水且淹水深度较深的现状红树林出现红树林面积严重退化或较大面积的死亡现象,为保护好现状红树林,设计中尽量降低现状红树林的淹水深度或使现状红树林不再淹水,改造后要保证后续养殖对水深的需求,并且改造过程要尽量减少土方开挖量节约投资。

②现状无红树林生长的养殖塘:塘内水位确定主要考虑满足养殖品种的水深需求,不大幅度减少养殖水体体积,在此基础上尽量降低红树林营造区高程,以减少土方开挖回填量,节约工程投资。

(2) 养殖塘改造高程及水位控制

由于项目养殖塘数量众多,塘面积、闸门尺寸、是否生长有原生红树林等条件不相同,需分别对每口塘进行地形改造及塘内水位控制设计。

参考同类项目及根据本项目计算结果,红树林种植面积占养殖塘总面积 50% 左右时,种植区地形整理填高约 0.3m~0.6m 时改造成本相对较低且能满足养殖水深要求,养殖塘水位及高程确定见下表 3.1.4-1,养殖塘分区见下图 3.1.4-2。

表 3.1.4-1 养殖塘水位计高程表

序号	养殖塘编号	红树林种植高程/改造 后养殖塘常水位高程 (m)	改造后养殖区塘底平均 高程(m)	改造后养殖区平 均水深(m)
1	A01	1.10	-2.10	3.20
2	A02	2.00	0.60	1.40
3	A03	1.80	0.30	1.50
4	A04	1.90	-0.10	2.00
5	A05	1.90	0.32	1.58
6	A06	1.90	0.65	1.25
7	A07	1.90	0.88	1.02
8	A08	2.00	0.55	1.45
9	A09	1.80	-0.23	2.03
10	A10	2.00	1.40	0.60
11	A11	1.80	-0.20	2.00
12	A12	1.70	1.00	0.70
13	A13	1.90	-0.40	2.30
14	A14	1.70	-0.40	2.10
15	A15	1.70	1.00	0.70
16	B01	1.60	0.22	1.38
17	B02	1.60	-0.65	2.25
18	B03	1.80	0.43	1.37
19	B04	1.60	0.45	1.15
20	B05	1.60	0.10	1.50
21	B06	1.60	0.20	1.40
22	B07	1.50	-0.05	1.55
23	B08	1.60	-0.60	2.20
24	B09	1.60	0.50	1.10
25	B10	1.20	-0.21	1.41
26	B11	1.70	0.40	1.30

27	B12	1.60	-0.40	2.00
28	B13	1.60	0.35	1.25
29	B14	1.80	0.65	1.15
30	C01	1.80	1.20	0.60
31	C02	1.50	-0.70	2.20
32	C03	1.80	0.15	1.65
33	C04	1.90	-0.05	1.95
34	C05	1.80	0.25	1.55
35	C06	1.80	0.68	1.12
36	C07	2.10	0.58	1.52
37	C08	2.00	1.40	0.60
38	C09	2.10	1.50	0.60
39	C10	2.00	1.40	0.60
40	C11	2.00	0.45	1.55
41	C12	1.60	0.35	1.25

新种红树林不能长期淹水,为保证新种红树林的成活率/保存率,项目实施时需严格按照设计种植高程执行,施工时必须保证种植滩面沉降稳定后的高程不得低于设计的滩面高程,建议待滩面稳定后再进行红树林的种植。

根据《退塘还林区红树林生境恢复技术规程》(DB44/T 2411-2023),塘底高程在红树林适宜高程区间的养殖塘,塘底不需整地,直接植被恢复。塘底高程低于红树林适宜高程下限的养殖塘,通过挖沟起垄,局部抬升至红树林适宜高程区间。本项目一期工程现状裸滩高程稍高于周边红树林分布的下限高程,不需要进行地形改造,二期工程根据每个养殖塘红树林适宜高程设计地形改造,符合《退塘还林区红树林生境恢复技术规程》(DB44/T 2411-2023)的要求。

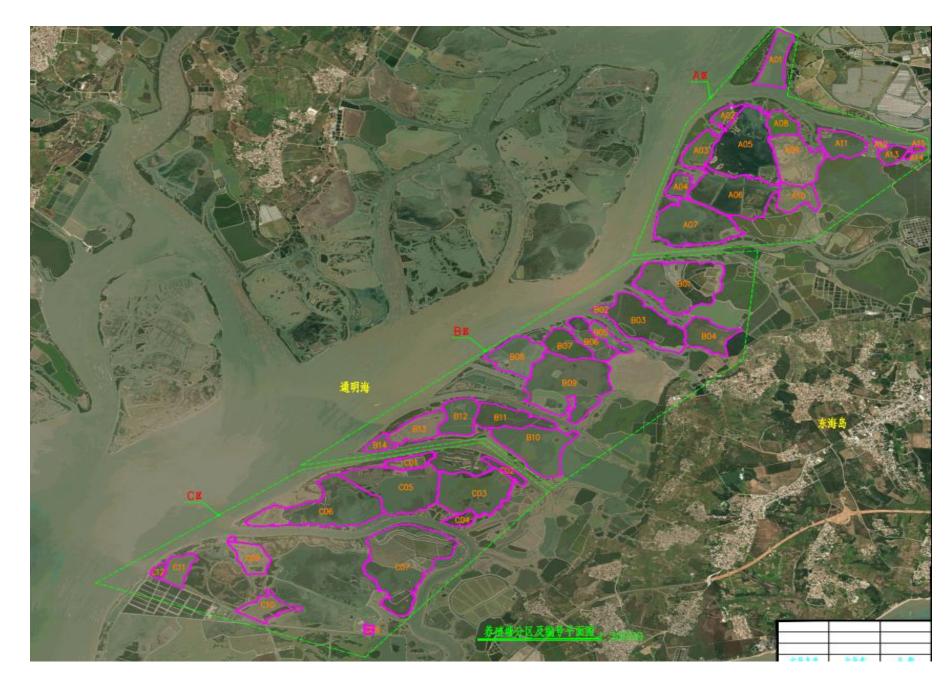


图 3.1.4-2 养殖塘分区图 86

3.1.4.3 潮沟设计

在项目二期养殖塘内设置若干主潮沟和补水潮沟,潮沟走向应保障潮水畅通; 主潮沟宽约 20~35m(满足养殖户养殖用水需求),边坡坡比 1:3,作为红树林 修复地形改造土方来源,同时也是后续养殖主要区域;补水潮沟主要位于种植区 内,根据地勘报告修复区土质的含水率、渗透率等指标,结合以往项目经验,确 定补水潮沟每隔 10m 布置一条,补水潮沟宽 0.8m,深 0.3m,后期在水流作用 自然成坡。作用是保持种植区内部滩面处于湿润状态,保证红树林生长需要。

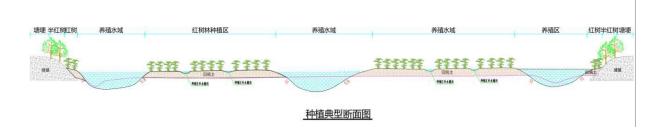


图 3.1.4-3 潮沟开挖及回填典型断面示意图

3.1.4.4 护土措施设计

临时护土措施在软土上直接成堤,可能发生一定的沉降,当发生沉降时应及时加高,确保护土措施顶高度达到目标高度。综合考虑护土措施沉降影响,确定护土措施顶标高 1.1-2.0m 之间,高度与塘内滩面改造高程相同。

(1) 护土措施布置

护土措施根据每个养殖塘的情况不同而分别采用双排松木桩或单排木桩结构。新种植斑块采用双排松木桩护土措施,现有红树林保护采用双排松木桩或单排木桩护土措施。

养殖塘 A01、B01、B03、B05、B06、C02 中新种植红树林斑块采用双排木桩结构护土措施。

有红树林的养殖塘中,红树林滩面到养殖塘塘底泥面高程差大于 0.5m 的采用双排木桩结构护土措施对红树林进行保护,涉及的养殖塘有 A03、A05、A08、C02、C05、C06、C11;高程差小于 0.5m(含 0.5m)的采用单排木桩结构护土措施对红树林进行保护,涉及的养殖塘有 A06、A07、B08、B09、B13、C03、C10。

保护现有红树林的护土措施除保护红树林的作用外,后期施工时还作为临近新种植斑块的护土措施。

(2) 护土措施结构设计

1) 结构设计

双排松木桩或单排木桩结构如下:

双排松木桩结构,桩长 5m,桩间距 50cm,桩顶标高 1.1-2.0m 之间,两排木桩间距 2m,中间填土至造滩标高,顶部种植红树林。两排木桩之间每隔 2m 设置对拉钢筋加固,外侧木桩侧面打钉固定竹胶板用于挡泥,木桩上部采用双排方木钻孔错位绑扎固定。底部铺设铺设长丝机织土工布防止淤泥流失。

单排松木桩结构,桩长 5m,桩间距 50cm,桩顶标高 1.6-1.9m 之间,外侧木桩侧面打钉固定竹胶板用于挡泥,木桩上部采用双排方木钻孔错位绑扎固定。背向现有红树林侧填土至设计标高,填土宽度 2-3m。

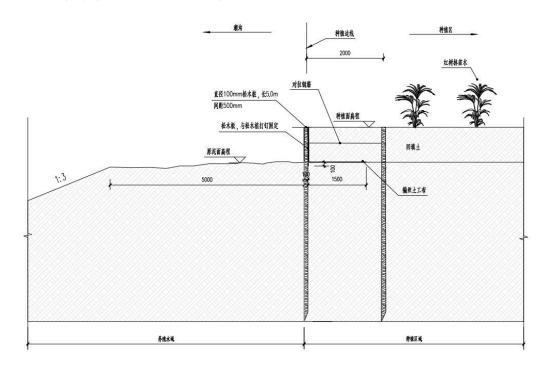


图 3.1.4-4 护土措施(双排桩)示意图

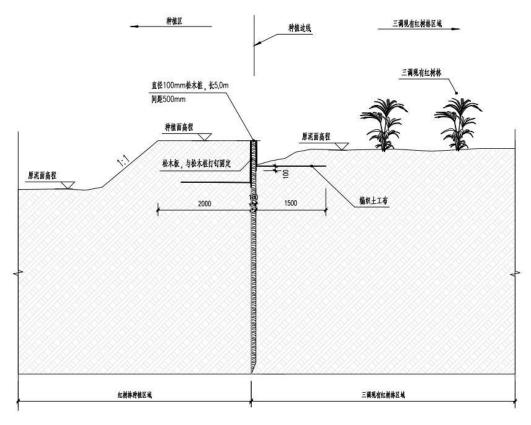


图 3.1.4-5 护土措施(单排桩)示意图

3.1.4.5 红树林造林设计

- 1、苗木选用原则
- ①以适应性强的乡土红树植物种类为主,构建适应性强的优势植被:
- ②适当参考临近区域引入种类,构建少量补充植被,以增加红树林生物多样性;
- ③大规模种植宜采用中苗,靠近养殖塘闸口等冲刷较严重的区域可适当选用 大苗,本次设计区域均选用中苗;
- ④常用苗木规格可参照下表的标准进行选择,可根据苗高、基径和土球直径 评定苗木质量。合格苗必须同时满足苗高、基径和土球直径标准;
 - ⑤苗木具有"两证一签"(生产经营许可证、检疫合格证和苗木产地标签)。

表 3.1.4-2 红树林修复合格苗木标准

规格	树种	苗高(cm)	基径(cm)	土球直径×厚度(cm)
	秋茄	30-50	1.0- 1.5	≥10×10
小苗	桐花树	20-40	0.5-0.8	≥10×10
	红海榄	40-60	1.0- 1.5	≥10×10

	白骨壤	30-50	0.5-0.8	≥10×10
	秋茄	50-80	1.5-2.0	≥15×15
中苗	桐花树	40-65	0.8- 1.5	≥15×15
, I, E	红海榄	60-90	1.5-2.0	≥15×15
	白骨壤	50-75	0.8- 1.5	≥15×15
	秋茄	>80	>2.0	≥20×20
大苗	桐花树	>65	>1.5	≥20×20
八田	红海榄	>90	>2.0	≥20×20
	白骨壤	>75	>1.5	≥20×20

注:本表引用自广东省自然资源厅广东省林业局 2022 年 1 月印发的《广东省红树林生态修复技术指南》。

2、树种选择

优先选用乡土红树植物,结合修复区域的潮位、盐度以及基质条件进行树种 选择,树种选择参见下表。地势较高区域选用半红树植物。

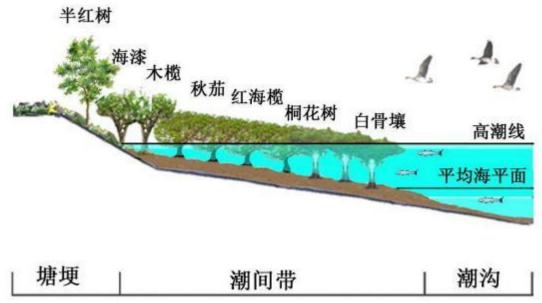


图 3.1.4-6 苗木配置示意图

表 3.1.4-3 红树林营造修复适宜树种及其生境特征

物种名	适宜潮位	适宜盐度
桐花树	低、中、高潮	低、中
白骨壤	低、中潮带	中、高
红海榄	低、中潮带	中、高

项目区周边植被调查结果显示,项目区所在区域的红树林主要有三个群落类型,分别是外来树种无瓣海桑群落、乡土树种红海榄群落、乡土树种白骨壤+桐花树群落。

根据优先使用区域优势树种和乡土树种的原则,一期项目区主要造林树种确定为白骨壤,搭配乡土树种红海榄和桐花树。二期项目区主要造林树种确定为红海榄,搭配乡土树种白骨壤、桐花树及秋茄。

图 3.1.4-7 项目区拟种植的红树树种

(1) 红海榄

红树科红树属常绿乔木或灌木,高可达8m~10m,支柱根发达。单叶对生,椭圆形或矩圆状椭圆形,叶背有明显黑褐色腺点。总花梗从当年生的叶腋长出,与叶柄等长或稍长,有花2至多朵;花具短梗,基部有合生的小苞片。胚轴圆柱

形,长 30cm~40cm,表面有疣状突起。红海榄是耐盐能力最强的树种之一,多见于盐度较高的潮间带滩涂。生长于红树林的中内缘,属演替中后期树种。

(2) 白骨壤

马鞭草科海榄雌属常绿灌木或小乔木,高可达 10m,具发达的指状呼吸根,也常出现气生根和支柱根。单叶对生,革质,卵形或卵圆形,全缘。叶片上下表面均有盐腺。花小,黄色或橙红色。隐胎生蒴果近扁球形。果实成熟期 8~11 月。耐盐和耐淹水能力最强的红树植物,叶片有盐腺,可以将多余的盐分排出体外。对土壤适应性广,在淤泥、半泥沙质和沙质海滩均可出现,属演替先锋树种。多分布于红树林外缘,也可在内滩出现。

(3) 桐花树

桐花树是紫金牛科蜡烛果属常绿灌木或小乔木,高 1m~5m。生长于有淡水输入的海湾河口中潮带滩涂,常大片生长于红树林靠海一侧滩涂,是盐度较低区域红树林演替先锋树种。喜光、稍耐阴;较耐寒;对盐度和潮位适应性广。

(4) 秋茄

秋茄是红树科秋茄树属的灌木或小乔木。株高达 2-3 米;树皮平滑呈红褐色,树枝粗壮且有膨大的节;树叶椭圆形、矩圆状椭圆形或近倒卵形,顶端钝形或浑圆,基部阔楔形;花萼裂片革质,花瓣呈白色,短于花萼裂片;果实圆锥形;种子于果实未离母树即萌发;花果期几乎为全年。生长于浅海和河流出口冲积带的盐滩。喜光,耐盐碱,多生长在河口湿地上。

3、苗木种植布置

(1) 一期工程

在自然潮汐条件下不同红树植物适应不同的潮位带。根据项目区各种植地块的地形和高程设计方案,在不同地块的不同位置分别种植乡土树种红海榄、白骨壤、桐花树,具体布置见下图。

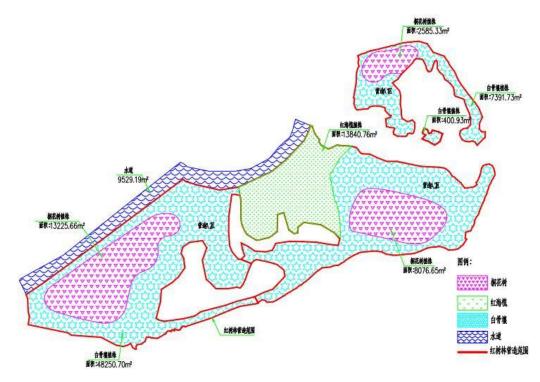


图 3.1.4-8 一期红树林营造区苗木布置图

(2) 二期工程

在自然潮汐条件下不同红树植物适应不同的潮位带。本项目为种养耦合体系, 养殖塘内部潮汐现象不明显,塘内基本无风浪。养殖塘种植区采用岛施布局,分 以下三种形式:

- 1) 养殖区与种植区完全分离,主要布置的养殖塘为 A13、B01、B03、B05、B06;
- 2) 靠海侧布置消浪护岸林方式,主要布置的养殖塘为 B08;
- 3) 养殖区分布于种植斑块间,除以上两种方式的其余养殖塘,为 A01~A12、B02、B04、B07、B09~B14、C01~12。

在苗木种植时考虑到水闸口水流速较快的情况,因此红树林种植斑块尽量避开水闸口区域,并且在靠近闸口的种植斑块选择白骨壤作为修复树种。其余斑块分别种植乡土树种红海榄、白骨壤、桐花树、秋茄。本项目红树林修复采用岛状整地形式,综合考虑后续红树林种植及管护便利性的情况下,1)和2)形式的养殖塘苗木种植按面积比例进行块状布置,同一块可种植一种或多种红树;3)形式的红树林苗木种植按照斑块布置,每个斑块可布置一种或多种红树,具体布置见下图。

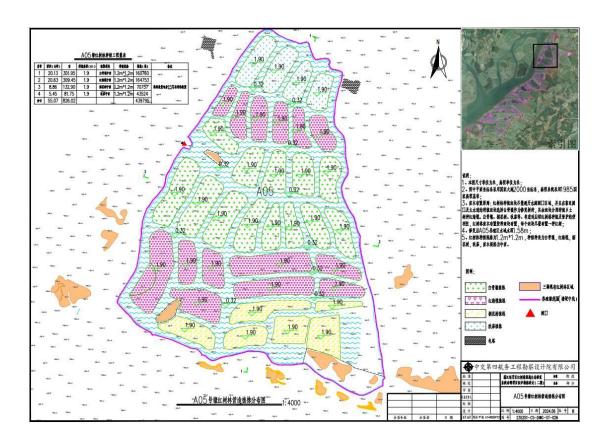


图 3.1.4-9 二期红树林营造区苗木布置图

4、种植密度和数量

(1) 一期工程

一期营造区选用种植密度 $1.2 \text{m} \times 1.2 \text{m}$ 株行距种植,每公顷种植不少于 6945 株,营造区拟种植红树林 98740.17m^2 ,红树植物苗木约 78855 株(含 15%补种株数)。

表 3.1.3-5 一期红树林苗木配置表

序号	区块	种植品种	规格	苗龄	种植面积 (m²)	株数	备注
1		桐花树	中苗 株高 40~65cm; 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2 年生	2585.33	2065	
2	A1	白骨壤	中苗 株高 50~75cm, 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2 年生	7792.65	6223	
3		桐花树	中苗: 株高 40~65cm; 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2 年生	21302.31	17012	含 15%补植 株数, 种植间
4	A2	红海榄	中苗: 株高 60~90cm; 基径 1.5~ 2.0cm; 土球直径×厚度≥15×15	2 年生	13840.76	11053	距 1.2×1.2m
5		白骨壤	中苗: 株高 50~75cm, 基径 0.8~	2 年生	48250.7	38534	

			1.5cm; 土球直径×厚度≥15×15			
6	A3	白骨壤	中苗: 株高 50~75cm, 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2 年生	4968.42	3968
			合 计		98740.17	78855

(2) 二期工程

二期营造区选用种植密度 1.2m×1.2m 株行距种植,每亩种植约 463 株,营造区拟种植红树林 10102.50 亩,红树植物苗木约 5378646 株(含 15%补种株数)。

表 3.1.3-5 二期红树林苗木总配置表

序号	种植品种	规格	苗龄	种植面积 (亩)	株数	备注
1	白骨壤	中苗: 株高 50~75cm , 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2年生	3261.75	1699444	
2	红海榄	中苗: 株高 60~90cm; 基径 1.5~ 2.0cm; 土球直径×厚度≥15×15	2年生	4698.90	2538865	含 15%补植 株数, 种植
3	桐花树	中苗: 株高 40~65cm; 基径 0.8~ 1.5cm; 土球直径×厚度≥15×15	2年生	1129.05	601115	间距 1.2×1.2m
4	秋茄	中苗: 株高 50~80cm , 基径 1.5~ 2.0cm; 土球直径×厚度≥15×15	2年生	1012.80	539222	
		合计		10102.50	5378646	

表 3.1.3-6 二期各区块种植工程量表

序号	区块	植株种类	种植面积 (亩)	株数(株)	备注	
		白骨壤中苗	63.45	33781		
		红海榄中苗	80.85	43045	- - 植株数据包含 15% -	
1	A01	桐花树中苗	33.15	17649	一 植体数据包含 1376 一 补种株数量	
		秋茄中苗	35.40	18847	一 作 作	
		(小计)	212.85	113323		
	A02	白骨壤中苗	18.45	9823	植株数据包含 15%	
2		红海榄中苗	65.55	34899	一 植体数据包含 1376 一 补种株数量	
		(小计)	84.00	44722	一 作的	
		白骨壤中苗	60.90	32424		
		红海榄中苗 73.35	39052] - 植株数据包含 15%		
3	A03	桐花树中苗	15.15	8066	一 植体数据包含 13% 一 补种株数量	
		秋茄中苗	14.70	7826	一 作 作	
		(小计)	164.10	87368		
4	A04	白骨壤中苗	27.60	14694	植株数据包含 15%	

				Г	
		红海榄中苗	85.95	45760	
		(小计)	113.55	60455	
		白骨壤中苗	301.95	160760	
		红海榄中苗	309.45	164753	│ ── 植株数据包含 15%
5	A05	桐花树中苗	132.90	70757	一 补种株数量
		秋茄中苗	81.75	43524	刊刊你奴里
		(小计)	826.02	439795	
		白骨壤中苗	223.80	119153	
		红海榄中苗	300.30	159882	── ── 植株数据包含 15%
6	A06	桐花树中苗	71.85	38253	—
		秋茄中苗	54.00	28750	一 作作体效星
		(小计)	649.95	346038	
		白骨壤中苗	182.70	97271	
		红海榄中苗	217.95	116038	古世粉世句念 150/
7	A07	桐花树中苗	76.95	40969	一 植株数据包含 15%
		秋茄中苗	77.40	41208	— 补种株数量
		(小计)	555.00	295486	
		白骨壤中苗	40.80	21722	杜州业日白人150/
8	A08	红海榄中苗	88.80	47278	一 植株数据包含 15%
		(小计)	129.60	69000	— 补种株数量
		白骨壤中苗	116.40	61972	
		红海榄中苗	190.35	101344	
9	A09	桐花树中苗	42.75	22760	植株数据包含 15%
		秋茄中苗	40.20	21403	— 补种株数量
		(小计)	389.70	207479	
		白骨壤中苗	61.50	32743	
		红海榄中苗	87.00	46318	+++++++++++++++++++++++++++++++++++++
10	A10	桐花树中苗	31.80	16931	植株数据包含 15%
		秋茄中苗 20.25	10781	补种株数量	
		(小计)	200.55	106774	
		白骨壤中苗	54.30	28910	
		红海榄中苗	90.00	47917	1+14-W-14-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-
11	A11	桐花树中苗		一 植株数据包含 15%	
		秋茄中苗	43.95	23399	— 补种株数量
		(小计)	219.90	117076	
	=	白骨壤中苗	18.00	9583	植株数据包含 15%
12	A12	(小计)	18.00	9583	— 补种株数量
	=	白骨壤中苗	87.30	46479	植株数据包含 15%
13	A13	(小计)	87.30	46479	
		白骨壤中苗	9.75	5191	植株数据包含 15%
14	A14	(小计)	9.75	5191	

		白骨壤中苗	12.30	6549	植株数据包含 15%
15	A15	(小计)	12.30	6549	
		白骨壤中苗	146.55	78024	11 11 11 11 11 11
		红海榄中苗	148.50	79063	
16	B01	桐花树中苗	33.15	17649	─ 植株数据包含 15%
10		秋茄中苗	33.75	17969	— 补种株数量
		(小计)	361.95	192705	
		白骨壤中苗	26.25	13976	植株数据包含 15%
17	B02	(小计)	26.25	13976	— 补种株数量
		白骨壤中苗	186.60	99347	
		红海榄中苗	213.60	113722	
18	В03	桐花树中苗	51.00	27153	植株数据包含 15%
		秋茄中苗	56.70	30188	— 补种株数量
		(小计)	507.90	270410	
		白骨壤中苗	66.60	35459	
		红海榄中苗	154.50	82257	
19	B04	桐花树中苗	22.20	11819	— 植株数据包含 15%
		秋茄中苗	19.35	10302	— 补种株数量
		(小计)	262.65	139837	
		白骨壤中苗	28.95	15413	
	B05	红海榄中苗	49.80	26514	
20		桐花树中苗	10.35	5510	— 植株数据包含 15%
		秋茄中苗	10.35	5510	— 补种株数量
		(小计)	99.45	52948	
		白骨壤中苗	60.15	32024	
		红海榄中苗	103.35	55024	一 技性类提点
21	B06	桐花树中苗	21.45	11420	— 植株数据包含 15%
		秋茄中苗	21.15	11260	— 补种株数量
		(小计)	206.10	109729	
		白骨壤中苗	61.95	32983	
		红海榄中苗	119.55	63649	— 技批粉提包含 150/
22	B07	桐花树中苗	34.95	18608	─ 植株数据包含 15%─ 补种株数量
		秋茄中苗	24.45	13017	一 你們你
		(小计)	240.9	128257	
		白骨壤中苗	89.10	47438	
		红海榄中苗	197.85	105337	古批粉提句会 150/
23	B08	桐花树中苗	58.65	31226	一 植株数据包含 15% 外种株物景
		秋茄中苗	44.10	23479	— 补种株数量
		(小计)	389.70	207479	
24	DOO	白骨壤中苗	190.80	101583	植株数据包含 15%
24	B09	红海榄中苗	203.55	108372	

		扫世林古世	(2.55	22202	
		桐花树中苗	62.55	33302	
		秋茄中苗	53.85	28670	
		(小计)	510.75	271927	
		白骨壤中苗	83.55	44483	
		红海榄中苗	188.55	100385	┙ 植株数据包含 15%
25	B10	桐花树中苗	36.30	19326	→ 补种株数量
		秋茄中苗	41.40	22042	
		(小计)	349.80	186236	
		白骨壤中苗	118.50	63090	│ ── 植株数据包含 15%
26	B11	红海榄中苗	173.40	92319	→ 补种株数量
		(小计)	291.90	155410	一门们你效重
		白骨壤中苗	54.00	28750	
		红海榄中苗	134.55	71635	古批粉提包含 150/
27	B12	桐花树中苗	27.60	14694	─ 植株数据包含 15%─ 补种株数量
		秋茄中苗	23.70	12618	一个个个不知里
		(小计)	239.85	127698	
		白骨壤中苗	73.80	39292	
		红海榄中苗	113.85	60615	H H W H H A 1 50/
28	B13	桐花树中苗	24.30	12938	一 植株数据包含 15%
		秋茄中苗	25.50	13576	— 补种株数量
		(小计)	237.45	126420	
29 B		白骨壤中苗	69.75	37135	植株数据包含 15%
	B14	(小计)	69.75	37135	— 补种株数量
		白骨壤中苗	52.20	27792	
		红海榄中苗	24.75	13177	
30	C01	桐花树中苗	10.95	5830	植株数据包含 15%
		秋茄中苗	12.60	6708	
		(小计)	100.50	53507	
		白骨壤中苗	8.70	4632	
		红海榄中苗	8.40	4472	
31	C02	桐花树中苗	6.75	3594	─ 植株数据包含 15%
31	002	秋茄中苗	3.30	1757	— 补种株数量
		(小计)	27.15	14455	
		白骨壤中苗	10.44	83375	
		红海榄中苗	17.02	135924	_
32	C03	桐花树中苗	3.75	29948	─ 植株数据包含 15%
32	003	秋茄中苗	3.75	25156	— 补种株数量
		(小计)	34.36	274403	\dashv
		白骨壤中苗			
22	G0.4		25.65	13656	─ 植株数据包含 15%
33	C04	红海榄中苗	45.15	24038	— 补种株数量
		(小计)	70.80	37694	

		白骨壤中苗	228.90	121868	
		红海榄中苗	294.30	156688	── ── 植株数据包含 15%
34	C05	桐花树中苗	54.45	28990	—
		秋茄中苗	85.80	45681	一 作作机
		(小计)	663.45	353227	
		白骨壤中苗	120.30	54465	
		红海榄中苗	146.10	77785	古批粉捉包含 150/
35	C06	桐花树中苗	58.80	31306	─ 植株数据包含 15%─ 补种株数量
		秋茄中苗	39.00	20764	一 作的特殊製
		(小计)	346.20	184320	
		白骨壤中苗	125.10	66604	
		红海榄中苗	184.50	98229	── ── 植株数据包含 15%
36	C07	桐花树中苗	88.95	47358	一 但休奴据包含 13% — 补种株数量
		秋茄中苗	74.55	39691	一 作作外级里
		(小计)	473.10	251882	
27	COS	白骨壤中苗	12.90	6868	植株数据包含 15%
37	C08	(小计)	12.90	6868	补种株数量
		白骨壤中苗	51.00	27153	
		红海榄中苗	74.70	39771	古批粉提包含 150/
38	C09	桐花树中苗	16.80	8944	─ 植株数据包含 15%─ 补种株数量
		秋茄中苗	10.35	5510	一 TI'TT体效里
		(小计)	152.85	81378	
		白骨壤中苗	20.40	10861	
39	C10	红海榄中苗	68.10	36257	一 個体数据包含 13% 一 补种株数量
		(小计)	88.50	47118	一 作符外效里
		白骨壤中苗	36.15	19247	
		红海榄中苗	79.65	42406	── ── 植株数据包含 15%
40	C11	桐花树中苗	17.40	9264	一 個体数据包含 13% 一 补种株数量
		秋茄中苗	18.00	9583	TITT外
		(小计)	151.20	80500	
<i>/</i> 11	C12	白骨壤中苗	33.45	17809	植株数据包含 15%
41	C12	(小計)	33.45	17809	— 补种株数量

5、种植方法

- (1) 整地后, 需待泥土沉降稳定后进行种植;
- (2) 种植穴大小以放入土球时不损伤根系为宜;
- (3) 种植深度比原根际深 2~3cm, 在淤泥深厚的低潮滩可适当深植;
- (4) 对幼苗进行固定以减轻风浪的影响,所有苗木种植后应用竹竿扶植固定,防止苗木被海浪带走。具体方法为在苗木旁插入 1 根 2m 长的竹竿,插入深

度 1m,在苗高 15~25cm 处绑定竹竿上。

6、红树林成活率

本项目管护期要求 3 年,红树林种植成活率/保存率应满足:项目完工 6 个月,成活率/保存率≥90%;项目完工 1 年,成活率/保存率≥80%;项目完工 2 年,成活率/保存率≥75%;项目完工 3 年,成活率/保存率≥70%。

7、二期项目种养耦合系统构建

红树植物正常生长需要自然潮汐,尤其是定期的水淹与干露,而养殖生物需要尽量稳定的水环境特征以减少动物的应激反应,这样就形成了一定矛盾,潮汐退潮后,水体深度降低不能满足养殖动物的需求,尤其是在夏季高温季节,水体太浅会导致水温大幅度波动,水温过高或者层化导致溶解氧含量降低会导致养殖生物缺氧死亡。

目前二期工程池塘塘底高程约 1.2m 左右,水深在 0.5~1.5m 之间,养殖水体太浅容易导致水温波动,夏季发生高温层化,不利于养殖动物的存活和生长。本方案在养殖区域开挖取土进行地形改造,再通过闸门控制塘内常水位标高,改造后养殖水域水深在 0.6~2.3m 之间,而一般鱼类和虾类养殖水深要求在 1.0~1.5m,本方案养殖区域水深能够满足养殖动物对水位的生理需求,保障其存活率和生长性能。利用红树林凋落物作为养殖生物的饵料补充,减少水产饲料投放;同时红树林可以净化水质,减少养殖病害的发生;还可以降低牡蛎等养殖生物体内的重金属含量,实现水产品品质和养殖经济效益提升。

原养殖塘主要养殖鱼、虾和牡蛎,本项目根据水深的不同可以满足鱼、虾和牡蛎的养殖,建议养殖户养殖鱼、虾和牡蛎等,具体养殖品种由养殖户决定。

3.1.4.6 养殖塘闸门控制

水位控制是耦合系统中红树植物和养殖动物存活的关键,进排水控制是日常管理最重要的环节。本项目二期工程水位管理的原则是尽量简化闸门操作,复杂的管理程序往往很难长时间持续。

二期工程涨潮时潮水进入塘内时间短,仅在每个大潮区有海水淹没,其余时间塘内水位受闸门控制,因此为保证红树林成活率,需要对闸门进行控制,实现水位自动控制。

本次设计仅对闸板进行改造。为实现简单控制塘内水位,将养殖塘闸板改造

为溢流式闸板,闸板顶高程与红树林种植面标高相同,大潮期间潮水从闸板顶部进入塘内,恢复塘内部分潮汐特征,退潮时水从闸板顶部溢流,保持塘内水位不高于红树林种植面标高。中小潮期维持塘内水位以满足养殖用水需求。养殖塘换水时,可打开闸门进行正常换水操作,实现水位自动控制。

在闸门的闸墩上用红色标出塘内常水位标高,以方便后期水位监管。雨季受降雨影响塘内会积水,可在大雨后打开闸门泄水,避免红树林过长时间淹水。

闸板改造施工建议在种植滩面沉降稳定后进行,闸板高程根据沉降后的种植滩面高程进行复核,不得高于种植滩面高程。

闸板设计留 20cm 左右的可调节空间(以种植滩面为基准面上下各 10cm), 使后期能动态调节控制水位高程,以保证后期养殖常水位不高于种植滩面高程。

后续建议管理单位对水闸进行升级改造,进行智能化、自动化水位控制。

项目后期管护期间根据跟踪监测红树林生长状况及水位、水深监测,不断总结经验,寻找最适宜新种红树林生长的水位条件,完善闸门控制方案。

二期工程闸门规格及控制方案见表 3.1.4-4。

表 3.1.4-4 二期高程闸门规格及控制方案

养殖塘编号	闸板顶高		闸门控制方案	
プトグログ語 5冊 ワ	程(m)	中小潮期	大潮期	台风期
			选择一个涨落潮周期,在	台风前和台风期闭
		闸门始终处于	开始涨潮时打开闸门,在	好闸门, 台风后立
C07、C09	2.1	关闭状态,维	最高潮时关闭闸门,塘内	即打开闸门,在塘
C07, C09	2.1	持塘内水位在	水位先降低后升高,退潮	内水位退至常水位
		2.1m。	后塘内水自然溢流,降至	线 2.1m 以下后关
			2.1m°	闭闸门。
			选择一个涨落潮周期,在	台风前和台风期闭
A02, A08,		闸门始终处	开始涨潮时打开闸门,在	好闸门,台风后立
A10, C08,	2.00	于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
C10, C11	2.00	维持塘内水	水位先降低后升高,退潮	内水位退至常水位
CIUN CII		位在 2.0m。	后塘内水自然溢流,降至	线 2.0m 以下后关
			2.0m°	闭闸门。
			选择一个涨落潮周期,在	台风前和台风期闭
A04, A13,	1.00	闸门始终处	开始涨潮时打开闸门,在	好闸门, 台风后立
A05, A06,		于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
A07、C04、	1.90	维持塘内水	水位先降低后升高,退潮	内水位退至常水位
C06		位在 1.9m。	后塘内水自然溢流,降至	线 1.9m 以下后关
			1.9m∘	闭闸门。

			选择一个涨落潮周期,在	台风前和台风期闭
A03, A09,		闸门始终处	开始涨潮时打开闸门,在	好闸门, 台风后立
A11、B03、	1.00	于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
B14、C01、	1.80	维持塘内水	水位先降低后升高,退潮	内水位退至常水位
C03、C05		位在 1.8m。	后塘内水自然溢流,降至	线 1.8m 以下后关
			1.8m°	闭闸门。
			选择一个涨落潮周期,在	台风前和台风期闭
		闸门始终处	开始涨潮时打开闸门,在	好闸门, 台风后立
A12, A14,	1.70	于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
A15、B11	1.70	维持塘内水位	水位先降低后升高,退潮	内水位退至常水位
		在 1.7m。	后塘内水自然溢流,降至	线 1.7m 以下后关
			1.7m∘	闭闸门。
B01、B02、			选择一个涨落潮周期,在	台风前和台风期闭
B04、B05、	1.60	闸门始终处	开始涨潮时打开闸门,在	好闸门, 台风后立
B06、B08、		于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
B09, B12,		维持塘内水位	水位先降低后升高,退潮	内水位退至常水位
B13, C12		在 1.6m。	后塘内水自然溢流,降至	线 1.6m 以下后关
B15\ C12			1.6m°	闭闸门。
	1.50		选择一个涨落潮周期,在	台风前和台风期闭
		闸门始终处	开始涨潮时打开闸门,在	好闸门, 台风后立
B07, C02		于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
B077 C02		维持塘内水	水位先降低后升高,退潮	内水位退至常水位
		位在 1.5m。	后塘内水自然溢流,降至	线 1.5m 以下后关
			1.5m°	闭闸门。
			选择一个涨落潮周期,在	台风前和台风期闭
		闸门始终处	开始涨潮时打开闸门,在	好闸门,台风后立
B10	1.20	于关闭状态,	最高潮时关闭闸门,塘内	即打开闸门,在塘
Bio		维持塘内水	水位先降低后升高,退潮	内水位退至常水位
		位在 1.2m。	后塘内水自然溢流,降至	线 1.2m 以下后关
			1.2m°	闭闸门。

3.1.4.7 现有红树林保护方案

项目区红树林修复占用养殖塘内现有红树林面积约 34.74 公顷。因此项目实施时要重视对现有红树林的保护工作。现有红树林主要分布在养殖塘内部和养殖塘塘埂边坡上,分别采取不同的保护措施。

1、养殖塘塘埂边坡红树林保护

养殖塘塘埂边坡现状红树林保护方案如下:

(1) 施工前在红树林生长区范围外划定红树林保护范围,拉警戒线并设立

保护标志和警示牌,提醒施工人员注意保护红树林,避免误伤或破坏。

- (2)施工人员和施工设备进出场要避开红树林生长区域,特别是车辆在塘 埂上通行时,要提前规划好运输路线,避开有红树林生长区域。
- (3)施工期间,加强对红树林的巡护,特别是旱季,巡护时发现红树林干旱可以浇淡水补充水分。
 - 2、养殖塘内部现状红树林保护
 - (1) 施工期保护措施
 - 1)设立警戒线及加强巡视

施工前,在现有红树林周边插竹竿拉警戒线,施工过程加强施工管理,严禁施工设备及施工人员进入红树林生长区域,禁止任何破坏红树林生长活动,施工时由建设单位和监理单位定期进行巡视,对有可能破坏红树林生长的活动进行制止并进行处罚。

2) 合理安排施工工序

- ①详细勘察与规划:对养殖塘及其周边的红树林进行详细地勘察,了解红树林的分布、生长状况、物种组成等信息。基于勘察结果,制定详细的施工方案,明确施工范围、施工机械配置、施工工序和时间安排。
- ②机械选择与配置:根据施工需要,选择适合在湿地环境中作业的施工机械,如水陆两用挖掘机等。同时,根据施工进度和工程量,合理配置施工机械数量,确保施工效率。明确施工机械的作业范围,确保机械在作业时避开红树林区域,减少对红树林的干扰。
- ③合理安排施工工序:在养殖塘周边先进行施工,待外部施工完成后,再逐步向内推进,减少对红树林的直接影响。将养殖塘划分为若干个施工段,按照先易后难、先外后内的原则进行分段施工。每段施工完成后,及时恢复生态环境,减少对红树林的影响时间。

3) 平面开挖合理布局

平面布局设计时挖土和填方需避开现有红树林区,开挖边线距离现状红树林大于 10m,按 1:3 的坡度自然放坡至塘底高程,保证现有红树林滩面不受挖方施工影响而坍塌,同时避免开挖破坏红树林根系。

4) 做好现有红树林施工期管护

项目区现有红树林分布主要有成片分布、呈条状或小斑块分布。由于每口养

殖塘施工期 1-2 个月,施工期较长,施工期塘内红树林采取如下保护措施。

由于施工时间较长且需要干塘施工,故在施工期间加强对现有红树林的巡护,特别是旱季,增加对红树林的巡护频次,每天至少进行两次巡护,必要时,巡护人员可以携带工具和设备,如小水泵、水管等,在发现现有红树林区域出现干旱征兆时,及时进行浇水补水。在补水过程中,注意控制少量和浇水方式,避免对红树林造成不必要的伤害。

5) 强化跟踪监测

项目实施过程中根据跟踪监测单位反馈的现状红树林生长状况及时调整红树林保护方案,做到及早发现问题及早处理,避免施工对现状红树林产生不利影响。

- 6) 加强监管和执法
- ①加强对红树林保护区的监管和执法力度,对违反保护规定的行为进行严厉处罚。
 - ②加强巡逻和监测,及时发现并处理破坏红树林的行为。
 - (2) 施工后保护措施
 - 1) 严格控制养殖活动对红树林的影响

对于养殖活动,严格控制养殖密度和养殖方式,确保不对红树林造成负面影响。根据养殖品种的生长习性和环境需求,科学确定养殖密度,避免过高的养殖密度导致水体富营养化、水质恶化等问题,进而影响红树林的生态环境;定期对养殖区域进行监测和评估,根据养殖效果和生态环境变化,适时调整养殖密度。

- 2) 加强教育和宣传
- ①开展针对养殖户和周边居民的宣传教育活动,提高他们对红树林生态价值 和保护意识的认识。
 - ②鼓励公众参与红树林保护活动,形成全社会共同保护红树林的良好氛围。

3.2 建设项目施工组织设计

3.2.1 施工组织

(1) 施工人员安排

本项目高峰时期施工人员共100人,不设置施工营地,临时办公区和员工生

活租用附近村庄民房。

(2) 交通条件

东海岛交通设施比较完善,道路、港口畅通,四通八达,南侧面向南海,拥有约 18 公里的海岸线,西侧东雷高速跨越峡口,通向雷州半岛。岛内有 6.8 公里东北大堤与湛江市区的公路、铁路网络连成一体。岛上 28 公里的中线公路贯通全岛,湛林路、海明路、涛声路、疏港路、东南大道等道路已铺通。东海岛铁路全长 57.31 公里,由黄略至湛江西段,以及湛江西至钢厂段两部分组成。

(3) 水、电、通信供应条件

施工用水、用电可依托市政设施。施工临时通信可与当地电信公司联系解决, 陆上与水上船舶之间的通讯联系可采用对讲机和手机。

(4) 材料供应

本项目所需材料主要为红树林苗种,广东省建有主要红树林种苗生产基地 9 个,主要分布在湛江、珠海、江门、惠州等地区,基地面积约 106.6 公顷,苗木年生产能力约 2800 万株。其中,湛江市建有省级红树林苗圃 3 个,分别是雷州市附城南渡河管理处育苗场、雷州市远兴林业开发有限公司省级保障性苗圃、湛江市林业良种繁育场省级保障性苗圃。雷州市附城南渡河管理处育苗场位于湛江市雷州市,育苗面积 300 亩,主要生产培育的真红树有桐花树、秋茄、白骨壤、木榄、红海榄等 10 多种;半红树有银叶树、水黄皮、海杧果、海漆、玉蕊、木果楝、角果木等 10 多种,培育生产的红树林苗木年产达 500 万株以上。雷州市远兴林业开发有限公司省级保障性苗圃也位于湛江市雷州市,育苗面积 650 亩,年均产苗量 500 万株,主要培育白骨壤、桐花树、红海榄、木榄、秋茄、黄槿、水黄皮、海漆等红树林苗木,年可培育苗木 500 万株。湛江市林业良种繁育场省级保障性苗圃位于湛江市遂溪县,育苗面积 200 亩,年均产苗量 120 万株,培育主要树种白骨壤、红海榄、桐花和秋茄等。三个苗圃均与本项目区红树林生境条件基本一致,可以满足本项目红树林营造工程种苗需求。

本项目护土所需材料如木桩、围网、竹竿等属于常见材料,可就近在民安街道商铺购入。

(5) 用地及海域使用条件

本项目的用地及海域权属清晰,工程项目得到当地政府的大力支持,红树林 生态恢复期间区域用海性质不变。

(6) 施工条件

本工程区域气候较适宜,工程水电和交通等配套条件也相对较好,具有较好的施工条件。

综合以上工程条件及其他条件,工程项目条件满足建设要求。 由此可见, 本项目工程在建设条件上是可行的。

3.2.2 施工设备

本项目分期施工,其中二期分区块施工,项目施工机械一览表详见表 3.2.2-1。

序号	机械名称	规格型号	数量	备注
1	自卸汽车	10t	2 辆	用于红树林苗木及木桩运输
2	绞吸式挖泥船	2000m³/h	1艘	沿海区域拖带调遣
3	绞吸式挖泥船	200m ³ /h	3 艘	用于施工取土、吹填
4	运输货船	6t	2 艘	用于运输苗木
5	锚(机)艇	90~175kw	1艘	自航调遣
6	水陆两用挖掘机	水陆两用, 履带, 22-25m 长臂, 6 吨级, 2 方斗	5 台	挖、填沟,造垄

表3.2.2-1 施工设备机械一览表

3.2.3 施工方法

3.2.3.1 施工方法特点

- (1) 本项目为红树林生态修复。涉及植被种植,应选择合适的季节和天气。
- (2)工程建设需要投入足够的机具和人员,可采用多点同时施工的方法,确保工程按期完工。
 - (3) 应注意统筹协调,流水作业。台风期应注意防台。

3.2.3.2 施工工艺及产污环节

退塘还林的工艺流程及产污环节图详见图 3.2.3-1, 其中, 一期工程不涉及 滩涂高程改造。

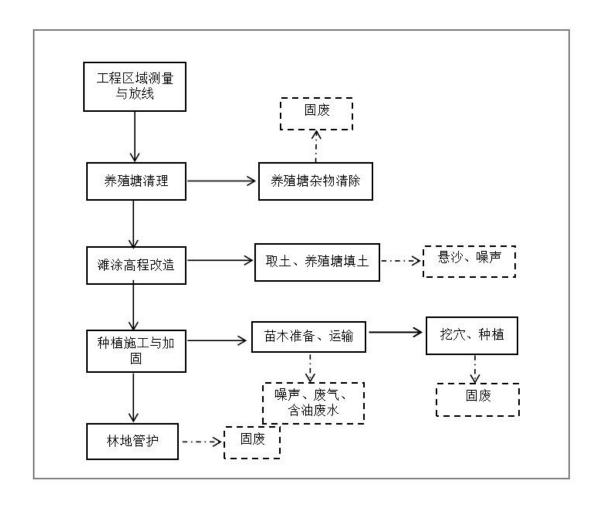


图 3.2.3-1 工艺流程及产污环节图

1、工程区域测量与放线

施工测量及观测原理遵循:控制测量—细部放样—竣工测量的测量流程进行。 现场测量对工程范围进行准确确认,保证后期施工正常进行。发现异常情况立即 落实查明。

2、养殖塘清理

养殖围塘内现有少许废旧渔网等,采用人工清除,收集后统一交由环卫部门 清运。养殖塘清理全部采用人工清理的方式完成。

3、滩涂高程改造

二期工程根据实施现场的情况,采用挖填或吹填方式改造滩面高程。施工前先打 开养殖塘闸门,降低塘内水位方便施工。塘内水位降低后,为避免红树林缺水, 根据每口塘现状红树林分布高程设计了水位控制高程。施工过程中打开闸门放水 至设计水位线位置,保持塘内水位在红树林根部以下,并且在每个大潮期间停工 一天,打开闸门进行海水交换,在最高潮时关闭闸门,对现有红树林进行淹水, 使滩面充分湿润,保证红树林正常生长。在退潮时打开闸门排水至施工期塘内控制水位。

根据现场地质勘察结果,修复区养殖塘内部为淤泥质黏土,孔隙率大,易沉降。仅有水陆两用挖掘机或绞吸挖泥船可以实现在塘内作业,普通挖掘机、推土机以及运输车辆无法进入施工区内部。因此本工程采用采用水陆挖掘机或绞吸式挖泥船施工。滩涂改造工程中,挖掘机和绞吸式挖泥船可能产生大量的悬浮物,施工机械运行过程产生噪声和废气。

根据项目区养殖塘现状,制定不同的地形改造方案。

滩涂高程改造采用水陆两用挖掘机和绞吸式挖泥船进行施工。其中养殖塘A13、B01、B03、B05、B06、B08 采用绞吸式挖泥船进行施工,其他养殖塘采用水陆两用挖掘机。

(1) 水陆两用挖掘机施工方案

现状无红树林生长的养殖塘采用排干水后进行挖填施工。项目区养殖塘表层泥为淤泥,含水率较高。施工期打开闸门,排干塘内水后,至少晾晒一周后,采用水陆两用挖掘机开挖回填。开挖前排干塘内水,晒塘2天后即可开挖,开挖边坡1:3,开挖后边坡稳定。

项目区生长有大片红树林的养殖塘,无法直接排干水,此类塘施工前降低塘内水位至红树林根部,通过布设临时护土措施后,再排干塘内水至少晾晒一周后,采用水陆两用挖掘机开挖回填。

本项目红树林种植斑块宽度约为 60-80m,从种植斑块两侧的潮沟开挖取土,转挖至种植斑块内部,由于运输车无法进入施工现场,因此施工时需要用挖掘机转挖,每台挖掘机作业半径约为 10m,潮沟宽度 15~35m,因此从潮沟取土运到种植区需要用挖掘机转挖 2~4 次,本次初步设计按平均转挖 3 次计算。斑块两侧潮沟同时开挖,土方转挖至种植区中部,土方挖至种植区后用挖掘机进行整平,整平同时预留内部补水潮沟。根据以往项目经验,地形改造后至少设置 1个月沉滩期(实际根据项目情况确定沉滩期),1个月后再进行植被种植。

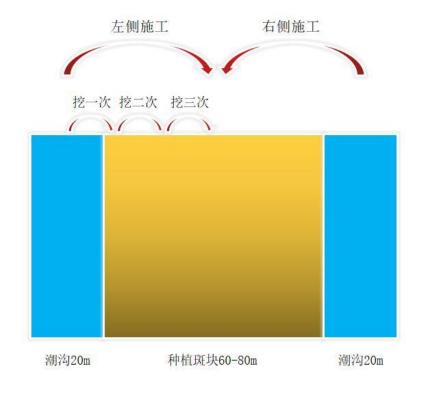


图 3.2.3-2 高程改造施工示意图

(2) 绞吸式挖泥船施工方案

养殖塘中无红树林生长或只有少量红树林、塘型狭长且进出方便的养殖塘选 择绞吸式挖泥船施工。

绞吸式挖泥船施工,先进行护土措施施工,之后用绞吸式挖泥船进行分层吹填,达到设计种植高程后沉降静置。根据以往项目经验,地形改造后至少设置1个月沉滩期(实际根据项目情况确定沉滩期),1个月后再进行植被种植。

4、红树林种植

(1) 苗木筛选、运输

1) 苗木筛选

红树林营造中植物选择按照多选乡土植物,不用外来物种原则进行选取。选择桐花树,红海榄、白骨壤、秋茄及半红树黄槿。苗木生长正常、苗木粗壮、根系完整和无病虫害的 I 级苗。苗木筛选可能产生部分不合格苗木。

2) 苗木运输

修复区围塘开闸放水后,内部土方质黏土,易沉降;苗木运输车辆无法进入; 因此主要采用车辆运输(至项目区沿岸)+船舶运输(至养殖塘边)的方式进行。 苗木运输过程车辆、船舶产生含油废水、噪声和废气。

施工所用水陆挖掘机靠近主路附近的采用陆路运输方式到达施工现场,在退潮时,水陆挖机通过滩涂达到施工现场。

图 3.2.3-3 苗木运输示意图

苗木通过陆路运输至现场后,以船舶将苗木运送至靠海侧种植区,进行分发种植,如苗木可直接运输至一期工程的 A1、A2、A3 种植区以及二期工程的 C01、C05、C09、C11、C12、B01、B02、B05、B06、B07、B08、B11、B12、B13、B14、A01、A02、A03、A04、A05、A07、A08等种植区。

不靠海的相邻塘块之间可以通过人力传递后再由无动力筏运送至种植区块,如: 苗木运输至 C09 区块后,利用 C09 区块中的无动力筏运至 C09 与 C10 区块的相邻塘埂处,再以人力传递苗木至 C10 区块,依此类推。

运输线路如图 3.2.3-3 所示。由图可知,苗木运输船的运输路线主要沿着养殖塘行驶,且项目分一、二期工程施工,二期工程又分 A、B、C 区块施工,苗木每日运输频次不高,因此,项目基本不会对周边的通航船只造成影响。

(2) 种植施工和加固

红树林是密生植物,以及红树林人工造林容易受海域众多自然灾害因素影响,造林密度宜大些。苗木种植规格为 1.2m×1.2m。

采取边挖穴边栽植的方式,种植穴长、宽、深为 20cm×20cm×20cm。红树林生长在特殊环境淤泥里,靠发达的气根呼吸,且生长缓慢栽植时防止根部土团松散和苗木根系损伤,种植深度比原根际深 2~3cm。栽植时必须做到苗正、舒根、压紧、适当深栽。栽植时间应遵循潮汐规律,通常安排退潮后及时造林。红树林有众多的气生根,移栽时易折断,在起苗、运输及种植时,应尽量小心,减少根部损伤。树苗植后在旁边插入 1 根 2m 长的竹竿(直径 2cm),插入深度 1m,在苗高 15~25cm 处绑定木棍上,防止海水涨落潮把种植苗冲走或刮大风时吹倒。

防止根部土团松散和苗木根系损伤,按整地要求挖种植穴,将苗木扶正放入 穴中,种植深度比原根际深 2~3cm,压实、舒根、填平。

红树林种植施工和加固过程中,可能产生部分受损的苗木等固废。

5、林地管护

为保证新种植的红树林幼苗顺利成长,在造林后 3 年内实施严格的封滩保育,禁止外来人员和船只进入红树林修复区,禁止围网、挖海螺、捕鱼虾等捕捞活动及人、畜踩踏活动。落实专业管护人员巡视与管养,种植完成后 2 个月内对未成活苗木进行第 1 次补植。退潮后定期对倒伏、根部暴露等受损的幼苗、幼树进行必要的修补,及时清理造林地内及缠绕在幼苗、幼树上的垃圾杂物、海藻等,对造林地内出现的油污及时进行有效处理。

有害生物防治以生物防治和物理防治为主,尽量减轻对环境的污染。对项目 区危害较严重的害虫种类有螟蛾类、卷蛾类、袋蛾类、枯叶蛾类和盾蚧类,对于 大规模严重发生的红树林虫害一般提倡采用黑光灯诱杀,对滕壶类污损生物可采 用人工清除或涂抹氟聚合物、有机硅树脂的方法防治,对于真菌和细菌病害可用 多菌灵喷洒。同时,加强检疫工作,杜绝一切检疫对象以任何途径进入红树林种 植区。红树林抚育及补种过程均为人工作业过程。

林地管护过程中,可能会产生海漂垃圾等固废。

6、施工注意事项

施工后经沉降稳定的种植滩面高程必须保证不低于设计的种植滩面高程/养殖区常水位,红树林在种植滩面沉降稳定后再进行种植,确保种植后的红树林不被长期淹没。

3.2.4 建设项目建设周期

结合工程规模、工程条件、自然条件及工程施工特点,工程施工总工期为 18 个月,从 2024 年 7 月至 2025 年 12 月。项目分期建设,暂未开工,施工进度表详见表 3.2.4-1。

表 3.2.4-1 施工进度表

类别	序号	工程项目名称	工期						202	4 年											202	5年					
) (),,,	/ , ,		月	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
前期	1	项目前期	3																								
工作	2	设计论证	3																								
	1			•			•					红树	材林营	造	•	•				•	•	•	•	•			
	1.1											_	期工和	程													
	1.1.2	红树林种植	2																								
	1.1.3	补植与管护	2																								
项目	1.2							•					期工和	程													
实施	1.2.1	滩面微地貌改造	13																								
大旭	1.2.2	红树林种植	14																								
	1.2.3	补植与管护	12																								
	2									生	态修	复跟路	宗监测	与效	果评值	古											
	2.1	生态修复跟踪监测	22																								
	2.2	生态修复效果评估	4																								
	1											_	期工和	程													
	1.1	竣工清理	1																								
竣工	1.2	竣工验收	1																								
验收	2					•						=	期工和	锃					•								-
	2.1	竣工清理	1																								
	2.2	竣工验收	1																								

3.3 土石方平衡分析

本项目一期工程不涉及滩涂高程改造,二期工程滩涂高程改造挖方 386.50 万 m^3 ,填方为 386.50 万 m^3 ,开挖土方全部用于回填,无弃方。各养殖塘的挖填方平衡见表 3.3-1。

表 3.3-1 各养殖塘挖填方平衡表

养殖塘编号	挖方 (m³)	填方 (m³)	借方 (m³)	弃方 (m³)
A01	171946.0	171946.0	0	0
A02	34268.4	34268.4	0	0
A03	50783.3	50783.3	0	0
A04	58060.1	58060.1	0	0
A05	333069.0	333069.0	0	0
A06	171549.1	171549.1	0	0
A07	177872.5	177872.5	0	0
A08	58091.9	58091.9	0	0
A09	223529.6	223529.6	0	0
A10	34930.8	34930.8	0	0
A11	137310.0	137310.0	0	0
A12	0	0	0	0
A13	51675.7	51675.7	0	0
A14	5408.3	5408.3	0	0
A15	2343.4	2343.4	0	0
B01	150616.8	150616.8	0	0
B02	21535.0	21535.0	0	0
B03	210593.4	210593.4	0	0
B04	94718.6	94718.6	0	0
B05	37062.1	37062.1	0	0
B06	57151.0	57151.0	0	0
B07	80780.6	80780.6	0	0
B08	190385.8	190385.8	0	0
B09	202562.6	202562.6	0	0
B10	180911.1	180911.1	0	0
B11	81332.3	81332.3	0	0
B12	130143.2	130143.2	0	0
B13	71764.6	71764.6	0	0
B14	15691.0	15691.0	0	0
C01	13064.5	13064.5	0	0
C02	17594.4	17594.4	0	0
C03	183731.1	183731.1	0	0
C04	33337.7	33337.7	0	0
C05	223970.0	223970.0	0	0

C06	112668.9	112668.9	0	0
C07	149693.8	149693.8	0	0
C08	0	0	0	0
C09	44.2	44.2	0	0
C10	14909.2	14909.2	0	0
C11	68283.2	68283.2	0	0
C12	10201.6	10201.6	0	0

3.4 项目占用海岸线和海域状况

本项目建设占用东海岛岸线约 42m,主要为二期工程 B04 养殖塘塘埂占用东海岛岸线,该岸线为人工岸线,本项目与周边岸线的位置关系图见图 3.4-1。

根据《自然资源部办公厅关于简化海洋生态修复项目用海审批手续有关事宜的函》,海洋生态修复项目可参照《自然资源部办公厅关于推进渤海生态修复工作的通知》(自然资办函〔2019〕616 号)中简化项目用海审批手续的相关政策执行,本项目为红树林修复与种植项目,无需办理海域使用审批手续。根据《海岸线占补实施办法(试行)》,对于开展红树林等植被种植、进行沙滩人工补沙等无构筑物建设的海岸线占补整治修复工程,可不办理海域使用审批手续。因此红树林种植面积不进行确权。

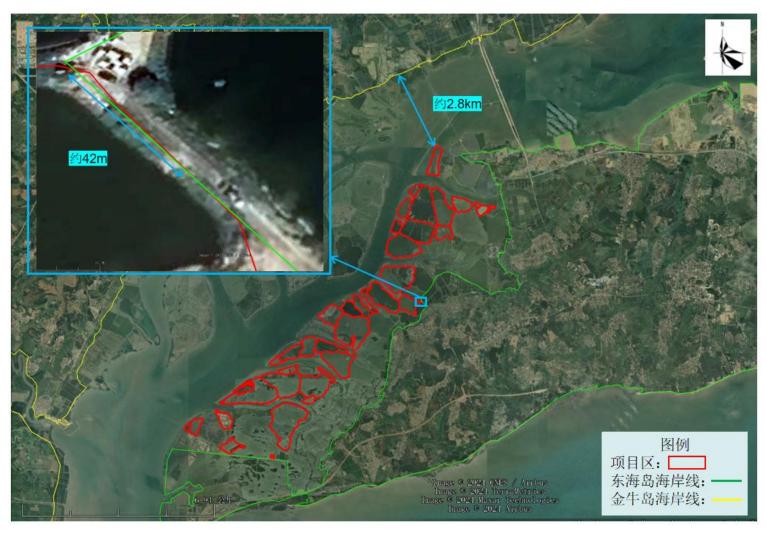


图 3.4-1 本项目与周边岸线位置关系图

3.5 项目施工期污染源强分析及拟采用的污染防治措施

3.5.1 废水污染源强分析及拟采用的污染防治措施

(1) 施工期悬沙

施工期水环境污染主要包括滩涂高程改造等产生的悬浮物。红树林种植选择低潮时施工,施工区域为滩涂时施工,悬沙源强产生很小,对周边水环境影响小,可以忽略不考虑。

参考《水运工程建设项目环境影响评价指南(JTS/T 105—2021)》中提出的经验公式进行估算。

$Q=R/R_0 \times T \times W_0$

式中:

Q: 施工作业悬浮物发生量(t/h);

R: 现场流速悬浮物临界粒子累计百分比(%), 宜采用现场实测法确定, 无实测资料时可取 89.2%;

R₀: 发生系数 W₀ 时的悬浮物粒径累计百分比(%), 宜采用现场实测法确定, 无实测资料时可取 80.2%;

T: 挖泥船施工效率 (m^3/h) ;

 W_0 : 悬浮物发生系数(t/m^3),宜采用现场实测法确定,无实测资料时可取 $38.0 \times 10^{-3} t/m^3$ 。

根据计算, 绞吸式挖泥船源强为 0.7kg/s、挖泥源强 0.33kg/s。

项目施工过程围塘滩涂不设溢流口,施工过程水闸紧闭,不与外环境发生海水交换,因此本项目施工过程悬浮泥沙可能对围塘内的水质、沉积物环境及生态环境产生一定影响,基本不会对围塘外的海洋环境造成影响。

2) 桩基施工、挖穴、种植

项目挖穴、红树林种植会有少量悬浮泥沙产生,通过采用低潮施工,待潮水退下后再进行施工,降低悬浮泥沙产生。

(2) 施工船舶含油污水

本项目无大型施工船舶,含油污水主要是 2 艘运输货船、4 艘绞吸式挖泥船和1艘锚艇产生的含油污水,含油污水产生量参考根据《水运工程环境保护设

计规范》(JTS149-2018)中 500 吨级以下船舶舱底油污水产量,为 0.14 t/d • 艘,运输货船的含油污水主要产生于红树林种植期间,为 11 个月,绞吸式挖泥船和锚艇的含油污水主要产生于滩涂高程改造期间,为 13 个月。则施工期运输货船舱底油污水量为 92.4t ,绞吸式挖泥船舱底油污水量为 218.4t,锚艇舱底油污水量为 54.6t。石油类含量在 2000~20000mg/L,含油污水浓度按 5000mg/L 估算,整个施工期运输货船污水含油量 0.46t,绞吸式挖泥船污水含油量 1.09t,锚艇污水含油量 0.27t。

运输货船产生的含油污水量约 0.28t/d, 绞吸式挖泥船产生的含油污水量约 0.14t/d, 暂存于船舶上的储水容器,每半个月上岸后用 15m³ 槽罐车抽吸运至有 资质处理的单位。槽罐车具有密封性,可以避免运输过程中发生跑冒滴漏的现象。

施工船舶含油污水应严格按照《船舶水污染物排放控制标准)(GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位处理。

(3) 生活污水

施工期生活污水主要来自施工现场施工人员主要因子为 COD、BOD₅、SS 和氨氮等。

本项目不设施工营地,施工期预计施工人员大约 100 人。项目施工人员均从 附近村庄临聘,设置一处临时移动厕所。项目生活污水经临时移动厕所处理后, 经罐槽车运至民安街道污水处理厂进行处理。

由于项目施工现场不设食堂和宿舍,此处参考广东省地方标准《用水定额第3部分:生活》(DB44/T1461.3-2021)附录 A(规范性)——国家机构——办公楼(无食堂和浴室)(先进值),职工生活用水量按10m³/人·a 计,约合0.833m³/人·月。

根据施工进度表,本项目滩面微地貌改造工期 13 个月,红树林种植工期 14 个月,滩面微地貌改造和红树林种植同时进行,按 14 个月计,则项目生活用水量为 1166.2m³。排污量按用水量的 90%计,则项目产生的生活污水量为 1049.6m³(约 2.5m³/d)。

根据《排水工程》(下册)中典型生活污水中常浓度水质进行估算,污水中主要污染因子特征浓度: COD: 250mg/L,BOD5: 150mg/L,SS: 220mg/L,氨氮 40mg/L。则 COD 的产生量约 262.4kg,BOD5 为 157.4kg,SS 为 230.9 kg,氨

氮 42.0kg; 水污染物产生量较小。

(4) 施工机械及车辆冲洗废水

项目施工期需对施工机械及车辆冲洗,冲洗过程会产生冲洗废水。项目运输车辆及其它施工机械均定期在洗车场进行清洗、清理,水陆两用挖掘机基本在养殖塘内完成施工后,才会驶离项目区域去洗车场进行清洗。冲洗产生的废水由洗车场负责处理后排放,基本不会对项目及周边海域海水水质、沉积物造成影响。

3.5.2 废气污染源强分析及拟采用的污染防治措施

施工期间废气主要为各类施工船舶、各类施工机械及车辆排放的燃油废气。 施工船舶、各类施工机械及车辆排放的燃油废气:其主要污染物为烟尘、SO₂、 NOx、CO 和烃类等,鉴于施工使用的船舶、机械设备相对较少,燃油废气产生 量相对较小,且排放点分散,施工方在施工过程中尽量使用低污染排放的设备, 日常注意设备的检修和维护,保证设备在正常工况条件下运转,废气污染的影响 很小,是可接受的。

3.5.3 噪声污染源强分析及拟采用的污染防治措施

施工噪声包括红树林种植工程噪声:水陆挖掘机、绞吸式挖泥船、运输船舶、 机械作业等。

红树林种植施工噪声:水陆挖掘机、绞吸式挖泥船、运输货船等作业噪声是红树林种植施工期的主要噪声源,声功率为 80~100dB(A)。

本项目主要施工设备的噪声见下表。

序号 设备名称 噪声级 dB (A) 与声源 (施工设备) 的距离 (m) 运输汽车 82~90 2 水陆挖掘机 5 80~90 5 3 绞吸式挖泥船 90~100 4 5 运输货船 90~100

表 3.5.3-1 各施工阶段主要噪声源状况

3.5.4 固体废物污染源强分析及拟采用的污染防治措施

(1) 生活垃圾

项目不设施工营地,施工期生活垃圾产生量按 0.5kg/人•d 计,项目施工人员约为 100 人,每天产生生活垃圾 50kg ,施工期生活垃圾产生量 21t。生活垃圾统一收集后交由环卫部门处理。

(2) 施工前期场地杂物

施工前期场地垃圾主要为滩涂、围塘场地施工前杂物清理。滩涂、围塘清理垃圾主要成分为废旧渔网、塑料袋、塑料制品、枯枝落叶等,由人工清理,总清理量约2t。收集后分拣,可回收部分回收,不可回收部分收集后交由环卫部门处理。

(3) 船舶残油、废油

施工船舶、绞吸式挖泥船、机械作业产生的残油、废油等危险废物,约 0.3t。根据《国家危险废物名录(2021年版)》,施工船舶作业产生的残油、废油等危险废物属于"HW08 废矿物油与含矿物油废物",废物代码为 900-210-08,按照水运污染危害性货物实施管理,统一交由有危险废物处理资质的单位将其安全处置。

(4) 废弃的红树林苗木

不合格苗木、断损苗木、死亡苗木以二次补种的红树林苗木数量计,大约 818626 株,全部集中清运交有能力单位处理。

(5) 清理杂草、海漂垃圾等固废

由于项目全部位于养殖塘内,因此杂草和海漂垃圾、缠绕在幼苗、幼树上的垃圾杂物、海藻等固废的数量不大,难以量化;上述固废统一收集后交由环卫部门处理。

3.5.5 小结

本项目施工期主要污染物产生情况见下表。

表 3.5.5-1 施工期主要污染物发生情况

建 环 设 境 产污环节				汽	5染物源3	虽	
设时期	环境要素	产污环节	污染因子	产生量	削减量	排放量	处理措施及去向
		取土工程	SS	绞吸式挖泥船 0.7kg/s、水陆两 用挖掘机 0.33kg/s	0	绞吸式挖泥船 0.7kg/s、水陆两 用挖掘机 0.33kg/s	自然排放,随着施工结束 而结束
	水环境	船舶含油污水	石油类	1.82t	0	1.82t	经收集上岸后应交由有 资质的单位处理。
	-74	生活污水		COD: 262.4kg, BOD ₅ : 157.4kg, SS: 230.9 kg, 氨氮: 42.0kg		COD: 262.4kg, BOD ₅ : 157.4kg, SS: 230.9 kg, 氨氮: 42.0kg	生活污水经临时厕所处 理后,经槽车运输进入民 安街道污水处理厂处理
	大 气 施工船舶、机烟尘、SC 环 械、车辆尾气 CO 和 境			较小	/	较小	自然排放,随着施工结束 而结束
		水陆挖掘机		80~90dB (A)	/	80~90dB (A)	
施工期	声环境	运输货船、绞 吸式挖泥船	噪声	90~100dB (A)	/	90~100dB (A)	选择低噪声设备,合理安 排工期
		车辆运输		82~90dB (A)	/	82~90dB (A)	
		生活垃圾	生活垃圾	21	/	21	统一收集交由环卫部门 处理
	固体废物		废旧渔网、塑料 袋、塑料制品、 枯枝落叶、草根、 树茎等	2t	/	2t	人工清除处理,收集 后分拣,可回收部分 回收,不可回收部分 统一收集交由环卫部门 处理
	废物	施工船舶 产生残油、废 油等	油类	0.3t	/	0.3t	统一收集交由有危险废 物处理资质的单位处置
		废弃的红树 林苗木	废弃的红树林苗 木	818626 株	/	818626 株	统一收集交由有能力单 位处置

		一般固废	杂草、海漂垃圾	少量		少量	统一收集交由环卫部门 处理
--	--	------	---------	----	--	----	------------------

3.6 项目营运期污染源强分析及拟采用的污染防治措施

本项目为红树林湿地生态系统修复工程,工程位于湛江经济技术开发区东海岛西部民安街道办范围内,通过工程手段营造植物适宜生长环境和红树林种植,整个项目营造红树林规模为 683.37 hm²,一期营造红树林规模为 9.87 hm²,二期营造红树林规模为 673.50 hm²。建设内容包括地形改造、苗木种植、管护以及养殖设计等。

1、3年养护期

项目竣工后需对种植的所有苗木养护 3 年,满 3 年后苗木成活率要在70%以上。种植后要定时检查成活率,新种植的红树林每年要定期抚育,抚育措施包括固定、扶正、补植,有害生物防治。红树林固定、扶正、补植期间会产生少量悬浮泥沙,产生量极小,对海洋环境影响不大。

养护期可能发生病死、坏死植株,全部收集后交有能力单位处理。

2、3 年后红树林运营期

运营期,在红树林巡视、维护和抚育过程中,可能产生少量人工清除的塑料袋、泡沫等海洋垃圾和浒苔等;此外,运营期可能发生病死、坏死植株。海漂垃圾统一收集交由环卫部门处置,病死坏死植株全部收集后交有能力单位处理。

3.7 项目各阶段非污染环境影响分析

3.7.1 项目建设对海洋环境的影响

1、工程将造成底栖生境破坏及底栖生物损失

本项目位于围塘内,滩涂高程改造等施工将改变围塘内原有的海底底质环境,项目滩涂高程改造区范围内的大部分底栖生物种类将被掩埋、覆盖,绝大多数死亡,从而造成底栖生物损失。

2、施工产生的污染物对海洋生态的影响

施工期产生的生活污水、船舶含油污水以及固体废物等若不得到合理处置,将会对附近海洋生态环境产生一定影响。此外,施工噪声也将对鱼类等海洋生物

产生一定的影响。因此,项目施工期间必须严格落实报告中提出的污染物防治措施,将项目施工过程产生的污染物对生态环境的影响降至最低。

3、运营期对海洋生态的影响

红树林的种植改善了相应的生态环境,因此营运期对生态环境基本没有不利影响。

3.7.2 项目建设对现有红树林的影响

1、施工产生的污染物对现有红树林生态环境的影响

施工期产生的生活污水、船舶含油污水以及固体废物等若不得到合理处置,将会对附近红树林生态环境产生一定影响。此外,施工噪声也将对在红树林栖息觅食的鸟类产生一定的影响。因此,项目施工期间必须严格落实报告中提出的污染物防治措施,将项目施工过程产生的污染物对生态环境的影响降至最低。

2、运营期对海洋生态的影响

项目为红树林湿地生态系统修复工程,红树林的种植改善了现有红树林的生态环境,为鸟类提供更多的栖息觅食空间,因此营运期对现有红树林的生态环境基本没有不利影响。

3.7.3 项目建设对通航环境的影响

施工期将投入2艘施工运输船舶,项目施工过程全部位于围塘内,且项目施工船舶基本不会进入周边习惯性航道区,也不会增加港口航运区的航运密度,项目施工期对所在海域的通航环境的影响较小。

项目运营期不需要使用船舶,对周边通航环境基本上无影响。

3.8 建设项目清洁生产分析

3.8.1 建设项目清洁生产内容与符合性分析

清洁生产是一种新的污染防治战略,是指将整体预防的环境战略持续应用于生产过程、产品和服务中,以提高生态效率和减少人类及环境的风险,也就是说清洁生产对生产过程要求节约原材料和能源,淘汰有毒材料,降低所有废弃物的数量和毒性;对服务要求将环境因素纳入设计和所提供的服务中。清洁生产评价指标可分为四大类:原材料指标、产品指标、资源指标和污染物产生指标。

根据经济可持续发展对资源和环境的要求,清洁生产谋求达到两个目标:

- (1)通过资源的综合利用,短缺资源的代用,二次能源的利用,以及节能、 降耗、节水,合理利用自然资源,减缓资源的耗竭,达到自然资源和能源利用的 最合理化。
- (2)减少废物和污染物排放,促进工业产品的生产、消耗过程与环境相融,降低工业活动对人类和环境的风险,达到对人类和环境的危害最小化以及经济效益最大化。

根据清洁生产的原理和目标,本项目应坚持实行污染防治和生态保护并重的指导方针,文明施工与作业,合理选择污染小的产业链,即运用先进技术、工艺和设备,减少污染物的排放,降低排放浓度,从源头上控制污染物的产生,同时加大生态建设和环保治理投入,确保生态环保设施建设与主体工程同时设计、施工和使用。本章拟从该项目施工期和营运期两方面考虑拟建项目是否符合清洁生产的原则和要求。施工期主要考虑施工过程、污染物产生与治理措施等;营运期主要考虑采用污染物产生和治理措施等。

清洁生产指标分为三级:一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。

3.8.2 建设项目清洁生产分析与评价

3.8.2.1 施工期清洁生产分析

本项目主要建设内容为红树林湿地生态系统修复工程,工程位于湛江经济技术开发区东海岛西部民安街道办范围内,通过工程手段营造植物适宜生长环境和红树林种植,整个项目营造红树林规模为 683.37 hm²,一期营造红树林规模为 9.87 hm²,二期营造红树林规模为 673.50 hm²。建设内容包括地形改造、苗木种植、管护以及养殖设计等。

施工期的清洁生产主要体现施工组织管理;施工器械的选择,如采用节能的设备和机械;施工工艺的优化,如施工工程节能、采用合理的施工顺序;施工期间污染物的预防与治理措施等。

①施工组织管理方面

- 1)制定合理施工能耗指标,提高施工能源利用率。
- 2) 优先使用国家、行业推荐的节能、高效、环保的施工设备和机具,如选

用变频技术的节能施工设备等。

- 3)施工现场分别设定生产、生活、办公和施工设备的用电控制指标,定期进行计量、核算、对比分析,并有预防与纠正措施。
- 4)在施工组织设计中,合理安排施工顺序、工作面,以减少作业区域的机 具数量,相邻作业区充分利用共有的机具资源。安排施工工艺时,应优先考虑耗 用电能的或其它能耗较少的施工工艺。避免设备额定功率远大于使用功率或超负 荷使用设备的现象。

②施工机械

在确保工程安全、可靠的情况下, 防止设备选型裕度过大,施工期间所采用的机械设备均为常规设备,均根据当地施工条件,结合施工单位作业经验,选取效率高、能耗低、低噪声、低污染的机械设备,尽量减少对资源的损耗和破坏,降低对环境的污染。

- 1)建立施工机械设备管理制度,开展用电、用油计量,完善设备档案,及时做好维修保养工作,使机械设备保持低耗、高效的状态。
- 2)选择功率与负载相匹配的施工机械设备,避免大功率施工机械设备低负载长时间运行。机械设备宜使用节能型油料添加剂,在可能的情况下,考虑回收利用,节约油量。

③施工工艺的优化

根据项目所在区特点及施工项目,选择合理经济的施工方案;合理安排施工组织设计,合理选用施工方案,减少不必要的能耗,以符合清洁生产的要求。在施工时尽量优化施工工序和方法,减少不必要的施工工序间的交叉,既提高作业效率,降低对环境的影响。

在施工过程中,推广应用节水、节电、节约原材料的生产工艺和方法。用海施工应充分考虑所处海域的自然环境状况和建筑材料的特点,选择对海洋环境影响最小的施工顺序和施工方法,尽量降低污染的产生和对海洋环境的影响。本工程合理安排工序,提高各种机械的使用率和满载率,降低各种设备的单位耗能。

④减少废物和污染物的产生

1)项目施工人员生活污水经临时厕所处理后,经槽车运输进入民安街道污水处理厂处理。施工船舶含油污水应严格按照《船舶水污染物排放控制标准) (GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后 应交由有资质的单位处理。

- 2)施工单位在制定施工计划、安排进度时,应充分考虑附近海域的环境保护问题,尽可能在退潮时施工,减少悬浮泥沙的扩散范围。
- 3)选取低噪声施工机械。合理安排施工时间,避免夜间(22:00~6:00) 高噪声施工。做好船舶和机械的保养,减小噪声。
- 5)施工工程场区生活垃圾要日产日清,交由环卫部门处理。船舶生活垃圾 及时收集和进行分类后,交由当地环卫部门统一外运进行处理。
 - 6) 施工结束后对剩余建筑材料及时处置,做到不污染周围环境。
- 7)施工船舶产生残油、废油等统一交由有危险废物处理资质的单位将其安全处置。
 - ⑤生产、生活及办公临时设施。

合理配置空调、风扇数量,规定使用时间,实行分段分时使用,节约用电。

- ⑥施工用电及照明。
- 1)临时用电优先选用节能电线和节能灯具,临电线路合理设计、布置,临电设备宜采用自动控制装置。采用声控、光控等节能照明灯具。
 - 2) 照明设计以满足最低照度为原则,照度不应超过最低照度的 20%。

3.8.2.2 项目清洁生产评价

工程施工过程中充分结合所处海域的自然环境状况,合理选择施工顺序、施工时间和施工工艺,相比国内其他海域工程作业,项目施工具有切合实际,可操作性强,利于减小污染影响范围等特点,清洁生产水平相对较高。同时,项目污染物排放包括施工船舶产生的含油污水、生活污水全部统一收集处理,固体废弃物全部统一收集处理,均符合国家有关环保政策和清洁生产要求,和同类建设项目相比,清洁生产水平较高,其清洁生产水平可处于国内先进水平。

3.9 建设项目总量控制

3.9.1 受控污染物的排放浓度、排放方式与排放量

按国家对污染物排放总量控制指标的要求,在核算污染物排放量的基础上提出工程污染物总量控制建议指标,是建设项目环境影响评价的任务之一,污染物总量控制建议指标应包括国家规定的指标和项目的特征污染物。

国家规定的"十四五"期间污染排放总量控制指标有:

- ①大气环境污染物: 氮氧化物、挥发性有机物。
- ② 水环境污染物: 化学需氧量, 氨氮。

本工程施工内容主要是滩涂改造、红树林种植。其产生的污染物对海洋环境的主要影响表现在水质和生态两方面,主要污染物种类为废水和固体废物,包括施工期的悬浮泥沙、生活污水、生活垃圾、噪声和施工船舶含油污水。

3.9.2 污染物的排放削减方法

项目施工期船舶含油污水交由有资质的单位处理,生活污水交由民安街道污水处理厂处理,生活垃圾通过及时收集和进行分类后,交由当地环卫部门统一外运。进行处理工程施工还将产生大量的悬浮物,根据施工实际情况采取相应的削减措施,最大限度降低 SS 含量。

3.9.3 污染物排放总量控制方案与建议

本项目为海洋生态修复工程,主要为红树林生态修复,项目运营期没有废水和废气产生,因此,不设置大气总量控制指标和水污染总量控制指标。项目不再申请总量控制指标。

4 区域自然环境概况

4.1 工程区域自然环境概况

项目区位于湛江东海岛西部,东雷高速以北,西湾村以东,红树林保护区西南,风浪较小,该区海岸带滩涂的主要利用方式为围塘养殖。项目建设区域绝大部分均位于滩涂围塘范围内。

项目区地处北回归线以南的低纬地带,属南亚热带季风气候区,海洋性气候明显,光、热、水资源丰富。其主要气候特点是:气候温暖,雨量充沛,雨热同季,光照充足;冬不寒冷,夏不酷热,夏长冬短,春早秋迟;秋冬春旱,常有发生,旱涝风灾,危害较重。

4.1.1 气候气象

本项目引用项目附近的硇洲岛海洋站 1990 年 1 月~2019 年 12 月实测资料分析结果,代表项目区域的气候与气象特征。

(1) 气温

本区域全年气温较高,多年年平均气温为 24.2°C,平均气温年变幅不大。最热的月份出现在 6~9 月份,多年月平均气温为 29.3°C以上;5 月次之,多年月平均气温为 27.6°C;最冷的月份出现在 1 月,多年月平均气温为 16.7°C;2 月次之,多年月平均气温为 18.1°C。平均最高气温出现在 6、7 月份为 29.3°C,平均最低气温出现在 1 月份为 16.7°C。历年最高气温为 37.5°C,出现在 2015 年 7 月 1 日;历年最低气温为 4.5°C,出现在 2016 年 1 月 25 日。

日最高气温≥35.0℃的天气主要出现在 5~9 月份,累年平均出现日数为 5.7 天。日最高气温≥30.0℃的天气主要出现在 2~11 月份,以 7 月份最多为 26.3 天,累年平均出现日数为 131.7 天。日最低气温≤10.0℃的天气主要出现在 11 月至翌年 3 月份,以 12 月至翌年 2 月最多,累年平均出现日数为 6.4 天;日最低气温≤5.0℃的天气出现过 0.1 天。

(2) 降水量

本区域年降水量充沛,累年平均降水量为 1312.9mm, 年际变化较大, 最多年降水量为 1822.8mm(2012年),最少年降水量为 735.5mm(2004年)。季节变化也非常明显,有雨季和旱季之分。每年的 4~9 月份为雨季,累年月平均降水

量均在 99.8mm 以上,受季风和热带气旋影响,6~9 月份降水最多,累年月平均降水量为 163.1mm 以上,整个雨季平均降水量共 995.8mm,占全年降水量的 76%。 10 月至翌年 3 月为旱季,平均降水量总共为 317.1mm,只占全年降水量的 24%。本区域日降水量不少于 0.1mm 的降水日数年平均 116.2 天。降水日数年际变化和季节变化较大,年降水日数最多为 155 天(2016 年), 年降水日数最少为 78 天(1991 年);降水日数的季节变化与降水量的季节变化基本一致,雨季降水日数最多,5~9 月的月平均降水日数都在 11 天以上,其中 8 月最多,月平均降水日数达 13.9 天,降水日 数的月际变化与降水量变化基本一致;旱季的 11 月至翌年 1 月降水 日数最少,月平均只有 5~7 天,夏季降水日数较多,冬季较少。历年日最大降水量为 320.9mm,出现在 2015 年 10 月 4 日,暴雨 及大暴雨也主要出现在雨季的 5~9 月份。

(3) 相对湿度

本区域海域相对湿度较高,多年平均值为 84%,1~9 月平均相对湿度较大,多年月平均都在 82%及以上,3~4 月相对湿度最大,多年月平均为 90%,10 月至 12 月平均相对湿度较小,多年月平均相对湿度在 79%及以下,11~12 月平均相对湿度最小,多年月平均相对湿度为 78%,本站观测到极端最小相对湿度为16%,出现在 2013 年 12 月 30 日。

(4) 能见度

硇洲海洋站海域能见度较好,多年能见度平均值为22.4km,5~8月份平均能见度较大,多年月平均都在28km以上,7月份能见度最大,多年月平均为35.2km,1~3月份平均能见度较小,多年月平均在12.7km及以下,本站观测到极端最小能见度为0.1km,11月至翌年5月都有出现。

(5) 风况

硇洲海洋站地处季风区,累年平均风速 3.5m/s,年主导风向为东向和东北东向,出现频率均为 13.7%和 12.8%,风向和风速随季节变化明显。秋、冬季盛行东北东向风,春季仍以东南东和偏东风居多,夏季盛行偏南向风,偏南风频率较大达 18.9%。常年平均风速变化不大,其平均值在 3.1m/s~3.7m/s 之间。其中 8月份的平均风速最小,多年平均值为 3.1m/s。历年最大风速为 47.0m/s,风向偏西,出现在 2015 年 10 月 4 日。

硇洲海洋站强风向为西向,最大风速为47.0m/s;次强风向为南南东向,其

最大风速为 30.0m/s。常风向为东向,累年出现频率为 13.4%,其对应风向的平均风速为 3.1m/s,最大风速为 23.0m/s。常年最少风向是西南西、西北西、西北,其出现频率为 1.4%。其余各风向常年出现频率分布在 1.7%~12.5%之间。

硇洲海洋站大风(≥8 级)在一年四季除了 1~2、12 月份外均可出现大风,其中 5、12 月份最少,大风日数仅 1 天,8~9 月最多,大风日数达 5 天,大风日数年平均为 3.6 天。

(6) 海雾

硇洲海洋站海域雾日较多,多年雾日平均值为 30 天,各月平均雾日数,1~4 月份平均雾日较多,多年月平均雾日都在 4.4 天以上,3 月份雾日最多,多年月平均为 10.0 天,6~10 月份平均雾日较少,多年月平均不到一天,其中 6、8~10 月份没有雾日。

4.1.2 自然灾害

影响项目所在海域的自然灾害有热带气旋、风暴潮增水、地震等。

(1) 台风

湛江位于南海北部,是受热带气旋影响较为严重的地区之一,平均每年有1.9个热带气旋影响湛江地区;年最多为5个,热带气旋8月出现最多,占27%,其次是9月占24%。据中国天气台风网统计,2013至2019年间,共计9个台风从粤西登陆,其中影响最为严重的是台风"威马逊"和台风"彩虹"。台风具体情况统计如下表4.1.2-1。

年份 名字 登陆点 登陆时间 风级 1306 温比亚 2013年 湛江市东海岛 2013-07-02 28m/s (10级) 2013年 1311 尤特 阳江市阳西县 42m/s(14级) 2013-08-14 2014年 1409 威马逊 湛江市徐闻县 55m/s(16级) 2014-07-18 湛江市徐闻县 40m/s(13级) 2014年 1415 海鸥 2014-09-16 2015年 湛江市坡头区 1522 彩虹 2015-10-04 50m/s(15级) 20m/s (8级) 2016年 1608 电母 湛江市徐闻县 2016-08-18 2017年 25m/s(10级) 1720 卡努 湛江市徐闻县 2017-10-16 2018年 1823 号台风百里嘉 湛江市坡头区 2018-9-13 20m/s(8级) 2019年 1907 号台风韦帕 湛江市坡头区 2019-8-1 23m/s (9级)

表4.1.2-1 2013至2019年影响粤西海域的台风统计表

根据《2020年广东省海洋灾害公报》,2020年,广东省海洋灾害以风暴潮

灾害为主,海浪灾害、赤潮灾害、海平面变化、海岸侵蚀和咸潮入侵等均有不同程度发生。各类海洋灾害给广东省沿海经济社会发展和海洋生态带来一定影响,共造成直接经济损失 0.49 亿元,未出现人员伤亡情况。其中,风暴潮灾害造成直接经济损失 0.49 亿元。2020 年,广东省沿海共发生风暴潮过程 5 次,其中 2 次风暴潮过程致灾,预警级别为黄色,分别为 2007 号"海高斯"台风风暴潮和2017 号"沙德尔"台风风暴潮; 1 次过程达到蓝色预警级别,为 2016 号"浪卡"台风风暴潮。其余风暴潮过程均为蓝色预警级别以下。2020 年 8 月 19 日 6 时前后,台风"海高斯"在广东省珠海市金湾区沿海登陆,登陆时中心附近最大风力12 级(35 米/秒),中心最低气压为 970 百帕。粤西沿岸各海洋站观测到 30-45 厘米的最大风暴增水,各站最高潮位均在当地蓝色警戒潮位以下,受"海高斯"台风风暴潮影响,广东省直接经济损失 0.49 亿元。

2020年本项目所处海域未受风暴潮灾害影响导致经济损失。

根据《2021年广东省海洋灾害公报》,2021年,广东省沿海共发生风暴潮过程6次,2次造成灾害,分别为2107号"查帕卡"台风风暴潮和2118号"圆规"台风风暴潮,共造成直接经济损失0.28亿元,未造成人员死亡失踪。2107号"查帕卡"台风风暴潮造成直接经济损失最为严重,为0.18亿元,占风暴潮灾害全年直接经济损失总额的64%。据统计,2021年风暴潮灾害造成全省15人受灾,紧急转移安置5075人,倒塌房屋9间,水产养殖受灾面积185.72公顷,损失水产养殖数量224吨,养殖设备、设施损失2个,毁坏渔船数量2艘,损坏渔船数量10艘,损坏码头数量7座,损坏码头长度0.02km,损毁海堤、护岸数量7座,损毁海堤、护岸长度0.27km,淹没农田面积116.67公顷。

2021年10月13日15时40分前后,台风"圆规"在海南省琼海市沿海登陆,登陆时中心附近最大风力12级(33m/s),中心最低气压为975百帕粤西沿岸各海洋站观测到90-215cm的最大风暴增水,其中海安站达到当地黄色警戒潮位。

2021年本项目所处海域未受风暴潮灾害影响。

根据《2022年广东省海洋灾害公报》,2022年,广东省共发生风暴潮过程5次,其中2次造成直接经济损失;近海发生灾害性海浪过程10次;发现赤潮14次,累计面积252.00km²;沿海海平面较常年高99mm;沿海区域均存在海岸侵蚀现象,近十年来粤西地区较为严重;珠江口区域出现咸潮入侵现象;海水入

侵现象主要出现在深圳市西部地区,零星分布于惠州市、阳江市、茂名市和湛江市。湛江市主要海洋灾害损失统计为0万元。

2022 年本项目所处海域未受风暴潮灾害影响。

根据《2023 年广东省海洋灾害公报》,2023 年,广东省共发生风暴潮过程4次,其中2次造成直接经济损失;近海发生灾害性海浪过程12次,海浪灾害过程1次;发现赤潮6次,累计面积20.00km²;沿海海平面较常年高54mm;沿海区域部分岸段存在海岸侵蚀现象,其中惠州市、江门市、湛江市部分监测岸段海岸侵蚀程度较2022年有所增加;珠江口区域出现咸潮入侵现象;湛江市和汕尾市监测到海水入侵现象。其中湛江市因风暴潮、海浪灾害造成直接经济损失0.63亿元。2023年7月17日22时20分前后,"泰利"以台风级强度在广东省湛江市南三岛沿海登陆,登陆时中心附近最大风力13级(38米/秒),中心最低气压965百帕。粤西沿岸潮(水)位站观测到70-140厘米的最大风暴增水,其中北津站、闸坡站和水东站出现了达到当地蓝色警戒潮位的高潮位;珠江口沿岸潮(水)位站观测到55-120厘米的最大风暴增水,其中珠海站出现了达到当地黄色警戒潮位的高潮位,赤湾站、黄埔站、横门站、三灶站和台山站出现了达到当地蓝色警戒潮位的高潮位,赤湾站、黄埔站、横门站、三灶站和台山站出现了达到当地蓝色警戒潮位的高潮位;其余各站最高潮位均在蓝色警戒潮位以下。受"泰利"台风风暴潮和近岸浪的共同影响,广东省直接经济损失合计 0.79 亿元。

2023年本项目所处海域未受风暴潮灾害影响。

(2) 地震

1)区域地震

地震资料包括历史地震资料及区域性地震台网地震资料。其中历史地震资料(M≥4.7)主要取自《中国历史强震目录(公元前 23 世纪~公元 1911 年)》(国家地震局震害防御司编,1995)和《中国近代地震目录(公元 1912~1990年 MS≥4.7)》(国家地震局震害防御司编,1999),1990年以后的强震目录从《中国地震台网观测报告(1991~2006年)》(中国地震局地球物理研究所编)以及《中国地震详目(2007年)》(中国地震局分析预报中心汇编)中续补。

区域性地震台网地震资料主要取自《中国地震详目(1970~2007年)》(中国地震局分析预报中心汇编),并参考广东省地震台网的速报目录续补。目前,广东省地震台网的测震能力已达到测定震级下限 ML2.0 级地震的要求,观测精

度也显著提高,其中省内重点监视区还能测定震级下限为 ML1.5 级的地震。

经统计,场地附近 $1067\sim2007$ 年共记录到破坏性地震 $(M\geq4.7)$ 30 次,其中 $6.0\sim6.9$ 级地震 3 次; $5.0\sim5.9$ 级地震 13 次; $4.7\sim4.9$ 级地震 14 次。

2) 地震活动空间分布特征

从区域地震分析,区域地震的空间分布显示了明显的不均一性,中强地震震中大致沿北东和北西两个方向展布,在河源、阳江、海丰、肇庆及广州、佛山一带地震较为集中,显示出区域历史地震活动与北东、北西和北东东向断裂构造的密切相关性。

区域性地震台网地震震中分布图表明,1970年以来的区域现今小震活动与历史地震活动的空间分布特征基本一致,现今地震分布与区域的北东、北西和近东西向三组断裂构造密切相关。例如历史上发生过中强震的河源、海丰、阳江等地区就处于上述三组断裂的交会部位,现今小震活动频繁,表现了地震活动的继承性。广东沿海地区小震活动相对活跃,其中阳江、恩平、台山、海丰都曾发生过频度较高的小震震群。区域内及其附近的中强地震震源深度一般为5~23km,河源地区震源深度多数为4~8km,江西寻乌、龙南震源深度为9~23km,1962年河源6.1级和1969年阳江6.4级,震源深度均为5km,总之,本区地震均属发生于地壳内的浅震。

3) 地震活动时间分布特征

东南沿海地震带 M≥4.7级的地震活动在时间上具有明显的周期性,即以低潮期和高潮期交替出现为其主要特征。从序列分布来看,自 1400 年以来存在着两个地震活动周期,即 1400 年至 1710 年为第一活动周期,1711 年至今为第二活动周期。进一步研究自 1400 年来两个地震活动周期地震序列随时间的发展过程可以看出:每一活动周期都可以明显地划分成四个阶段,即平静阶段、加速释放阶段、大释放阶段和剩余释放阶段。

第一活动周期的地震序列,明显展现了本带一个典型的完整的周期过程,第二活动周期则尚未完结。对比二个活动周期的过程,考察其序列的时间分布和能量释放的情况得知: 1600~1605 年和 1918~1921 年分别为两个活动周期的高潮期,即大释放阶段,两者相距的时间与完整的第一活动周期所经历的时间相当一致,大约为 310~320 年。目前,东南沿海地震带处于第二活动周期的剩余释放阶段,仍存在发生 6 级左右地震的危险。预计该活动周期将延续到 2020~2031

年前后, 然后进入第三活动周期的平静阶段。

图4.1.2-1 区域性地震台网地震震中分布图 (ML≥3.0, 1970~2007年)

8

4)场地附近地震活动性

项目位置

00

自 1970 年广东省地震台网建立以来至 2007 年底,在场区附近共记录到 ML ≥1.5 级地震 28 次,其中 ML≥3.0 级地震仅有 2 次,图 2.2.2-1 显示现今小震零散分布在场区附近区域,本区范围内现今地震活动相对较弱,活动频度也较低。

根据湛江市地震台网报道,2022年8月13日03时05分在湛江市雷州市龙门镇(北纬20.62度,东经109.95度)发生ML2.9级地震,震源深度10km;2023年02月16日12时43分,在广东湛江市遂溪县附近海域(北纬21.35,东经109.62)发生M2.3级地震,震源深度10km,震中位于湛江市遂溪县附近海域,距离遂溪县城65km,距离湛江市区76km;2023年5月22日19时56分,在麻章区海域(北纬20.81度,东经110.53度)发生3.1级地震,震源深度16km。震中距离湛江市区约54km,距离湛江市麻章区硇洲镇约10km,距离最近的行政村麻章区硇洲镇南港村约8km;2023年6月24日3时7分36秒北部湾(北纬20.72度,东经109.07度)发生5.0级地震,震源深度20km,距离雷州市企水镇人民政府84km,雷州市城区119km,湛江市城区159km。雷州、吴川、廉江部分市民来电反映有震感。

根据项目现场踏勘以及咨询周边鱼塘养殖户情况,上述湛江市所发生地震并 未对鱼塘养殖以及围塘围堤等安全造成不良影响,可见周边震源距离本项目建设 位置较远,一般情况下,项目建设受地震灾害影响较小。

4.1.3 海洋水文

本项目红树林生态修复主要位于养殖围塘内,因此,种植区域(围塘)内的 海洋水文条件与项目周边海域水文条件存在差异。

4.1.3.1 项目周边海域潮汐及水位

(1) 资料来源

本节内容主要引用硇洲海洋站的潮位实测资料(2002年1月~2019年12月) 统计分析结果。

(1) 基面关系

硇洲海洋站各基面关系见图 4.1.3-1。

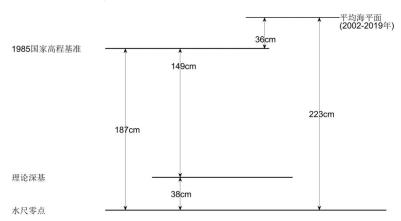


图4.1.3-1硇洲海洋站基准面关系图

(2) 潮汐性质

根据硇洲站 2002 年 1 月~2019 年 12 月的潮位观测数据, 计算得其潮型系数为 1.02, 据此判断硇洲海域潮汐性质属于不规则半日潮, 即在一个太阴日内有两次高潮和两次低潮, 且两次高潮和低潮的潮高不等, 潮时也不等。

(3) 潮汐特征

根据硇洲海洋站 2002 年 1 月~2019 年 12 月的潮位实测资料统计结果,年平均潮位为 185cm (理论深度基面,下同);平均高潮位 281cm,平均低潮为142cm;最高潮位为 526cm,最低潮位为-35cm;平均潮差 139cm,最大潮差 311cm。

4.1.3.2 项目区周边海域海流情况

(1) 潮流

项目区海域位于湛江东侧,与我国南海直接相连。基本不受河流影响,水流动力主要以潮汐水流作用为主。由于潮流受自然地形的制约,呈现典型的往复流动形式。潮流流速秋季较大,春季较小。涨潮流速小于落潮流速,表层流速大于底层流速。

(2) 波浪

项目区外海海域波浪主要受台风和季风影响,该海域东临南海,海水水域开阔,波浪主要以风浪为主,其频率可达80%,涌浪次之,占20%。冬季常浪向为ENE,出现频率为33.4%,夏季常浪向为SE和SSE,频率分别为22.4%和19.3%。多年平均浪高0.9m,最大波高9.8m,为台风过境时产生。雷州半岛东部海域近年统计波浪玫瑰图如下图。

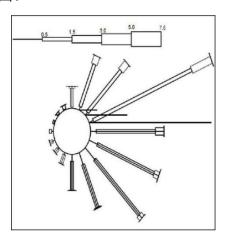


图 4.1.3-2 项目区海域波高玫瑰图

表 4.1.3-1	本区域月	(年)	波高统计表	(単位:	m)

月份	1	2	3	4	5	6	7	8	9	10	11	12	年
平均	1.0	1.0	1.0	0.9	0.8	0.7	0.7	0.7	0.8	1.1	1.2	1.1	0.9
最大	3.3	3.0	3.2	3.6	4.2	4.6	9.8	7.1	9.0	5.3	8.1	3.1	9.8

(3) 水温

项目区海域年平均水温在 24.1°C,年变化呈现单峰型特征。平均年差在 11.5°C左右,月平均最高水温一般出现在 7、8 月,平均为 28.9°C;月平均最低 水温一般出现在 1、2 月,平均为 17.4°C。春夏季通常为升温期,其中 4~5 月最 大升温达 4.3°C/月。月最高水温在 8 月,达 31.8°C,5~10 月最高水温可达 30.4°C,

其余月份不高于 28.2℃。年最低水温集中在 12~翌年 2 月,平均水温为 11.9℃。

4.1.4 地形地貌特征

本工程区位于湛江市东海岛,根据图 4.1.4-1 大地单元分区图可知,场址区位于雷琼断陷盆地,四会-吴川深断裂带在场区西北侧穿过。

(1) 雷琼断陷盆地

琼州海峡深断裂幣控制的断陷盆地见于琼州海峡两侧的雷南、琼北地区,北起遂溪大断裂,南及王五-文教大断裂,面积 16000km² 为新生代大陆玄武岩所覆盖,称为雷琼断陷盆地。该断陷盆地由白垩、第三系和第四系所组成,并构成东西向的凸起和凹陷。雷州半岛的凹陷,北部为湛江凹陷,面积 970km²,沉降幅度约 1000m。

(2) 吴川-四会深断裂带④

是省内一条重要的深断裂带,斜贯广东的中,西、北部,在广东境内全长超过800km,总体呈20~40°方向延伸,影响宽度15~20km。西南段明显分为两支,其中一支进入吴川后,潜伏于雷琼断陷之下,在海康乌石港附近插入北部湾;另一支沿阳江织箦断裂下海而进入大竹洲岛。该断裂带在粤西区是二级构造单元的分界线:在粤北区乳源和翁源是四级构造单元的分界线。

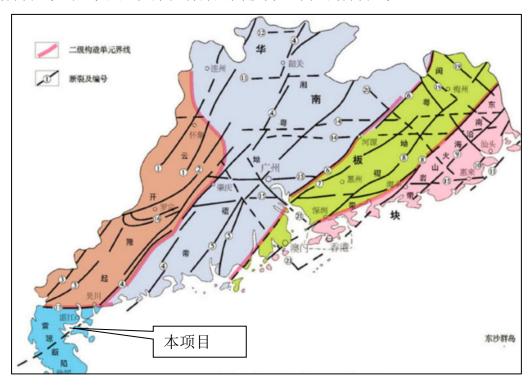


图 4.1.4-1 大地构造单元分区图

多年来,拟种植红树林区域未进行大范围改造,除有人工修筑土堤及围塘外, 基本无大型人工建筑及改造痕迹。

4.1.5 区域地质及岩性

4.1.5.1 区域地质状况

项目区域为滨海+丘陵台地,地形平缓。建筑物稀少,人流车流较少。

本章节引自《湛江经开区红树林湿地生态修复系统治理项目初步勘察设计设计报告》。根据《广东省区域地质志》、《湛江市地质图》资料、工程地质勘察资料,场地区域岩石为玄武岩、火山岩、火山碎屑岩等。工程场地地表被第四系海积层和人工填土覆盖。

古生代寒武纪早期,雷州半岛是广阔的浅海。随后半岛北部地壳大幅度下降, 震荡频繁,沉积了一套浅海相类复理石碎屑岩、泥质岩、硅质岩和含有机质的岩 石,到寒武纪末期地壳上升,海水退却,形成陆地。加里东运动使寒武纪地层发 生强烈褶皱,形成半岛北部的崇山峻岭和山间盆地。

晚古生代中泥盆世早期,半岛北部以山间盆地沉积为主,形成较厚含砂岩、中粗粒砂岩夹页岩。到中泥盆世晚期,地壳稳定下降,海水自西南向北东方向入侵,沉积了一套浅海相砂页岩及碳酸盐岩,局部夹似层状铅锌矿或黄铁矿。到石炭纪末期,海水一去不复返,使二叠纪地层缺失,基本结束了半岛北部地区古生代海相沉积阶段,所形成的岩系为半岛后期沉积的基础。

中生代三叠纪,地壳发生了强烈印支运动,使半岛发生了翻天覆地的变化,沧海变成了陆地,雷州半岛全部露出水面。但因地壳上升运动是缓慢而不均匀的,所以半岛北部上升比较快,便继续隆起剥蚀。其半岛中南部的坡头南三、东海岛等地则上升缓慢,仍保持残留海水的凹地。中生代侏罗纪早期至白垩纪晚期,强烈的燕山运动,于半岛北部表现以垂直作用为主的断块运动和多期岩浆活动,形成一系列北西向和东西向的断裂构造,将经过智皱的古生代地层切割成若干断块:在半岛中南部表现是地壳大幅度下降,产生了一系列北东向和北西向的深大断裂,并形成了江凹陷、螺岗岭凹陷、纪家凹陷、乌石凹陷、锦和凹陷、迈陈凹陷、东海凹陷、雷北凸起、雷南斜坡基本轮廓。

距今 0.00012~0.7 亿年的新生代,由于受到中生代晚期地壳运动影响,地壳的升降运动和断裂活动仍不断发生,使半岛的中南部陆地面积进一步拓宽,出现

了下第三纪至上第三纪湖泊相--海相相--滨海相--浅海相含膏盐碎屑岩粗碎屑岩 夹薄层褐煤及多层泥灰岩、砂泥质碎屑岩的沉积。半岛广大不沉陷区,岩层厚度 519~1669 米。

到第三纪末期,由于受到喜马拉雅运动的影响,加剧了雷琼断裂的沉降和海水人侵,使雷州半岛和海南岛分离,形成宽达 18 海里的琼州海峡。经第三纪喜马拉雅运动之后,第四纪地壳运动仍时有发生,造成地壳的进一步升降和断裂活动,以至形成地下深处火山熔岩流、熔岩和火山碎屑物大量溢出地面,从第四纪早期起,经过多次喷发,溢出地表的熔岩流不断增多,堆积面积不断扩大和增高,经冷凝后构成规模大小的盾状、丘状熔岩山。火山熔岩覆盖面积达 3694 平方公里,约占半岛面积的 40%。这些形态各异、规模大小的熔岩山,经过了漫长风化剥蚀作用,演变而成现代半岛中南部广布的火山熔岩台地及火山丘陵地形。

图 4.1.5-1 区域构造单元示意图(1:50 万)

注: I1华南褶皱系 II6雷琼断陷

图 4.1.5-2 区域地质图 (1: 20 万)

根据广东省地质构造(体系)纲要图(1:50万),查阅中国大地构造图(1:400万),场 地位于华南褶皱系(一级单元)的雷琼断陷(二级单元)。

湛江市内陆部分地质构造较复杂,构造形迹表露较多。雷州半岛大部分为新生代沉降区,即雷琼东西向喜马拉雅沉降带(雷北凸起之南),地表皆为第四系及喷出岩所覆盖,表露构造形迹不多,仅见平缓的褶皱及推测断层。根据地球物理、水文工程地质、石油 普查钻探资料推测,雷州半岛的基底构造情况:

(一)褶皱构造北东向褶皱构造:主要有廉江至中垌(化州部分)复式向斜, 北东延 长 40 公里,宽 15 公里,由彼此平行狭长的次级向背斜组成,幅宽 1~3 公里,走向 32~55 度,轴面倾向北西,两翼倾角一般 40~60 度,少数 70~80 度, 形成于印支期,复向斜轴 部地层为石炭系,两翼为泥盆系。

东西向褶皱构造是较少的褶皱,有廉江黄竹根向斜(印支期形成),东西长25~30 公里,宽约 5~6 公里。

其它褶皱构造有新生代小型向背斜湛江平岭背斜、海头倾伏背斜、东海岛坑里背 向斜、庵里背斜、海康湖仔至加山岭背斜、谭延背斜、讨四向斜、湛江调熟倾伏向斜、 徐闻土秀湖背斜、胜利圩背斜、涠洲岛向斜等,规模大小不一,长约 3~16 公里,宽度不清。

(二) 断裂构造

北东向断裂:一是吴川至四会断裂南延部分,即从吴川向南海延伸,经南三岛、东海岛、推测到海康港,斜穿雷州半岛南部,入海南岛,北东走向 30~45 度规模大,下切陆壳至上地幔,长有 20 公里左右;二是廉江庞西断层,古城至沙铲断裂,皮头至南圩断裂,山背断裂,高坡断裂,长 15~60 公里,宽 50~150 米切割了古生代至中生代地层。

东西向断裂:有一组近等距离平行排列(30~40 公里),规模大,可能穿切了地壳,下插上地幔。如雷州半岛上的玄武岩,分布是东西向,它来源上地幔,可能与其有关。从北向南平行的呈东西向断裂的有廉江的河唇一带东西向断裂,黄竹根东西向断裂,官山嶂东西向断裂,大崇山东西向断裂,遂溪县城(南部)一带东西向断裂,湛江港一带东西向断裂,海康港至调风东西向断裂,徐闻县和家至前山东西向断裂,琼州海峡东西向断裂。东西向断裂延长 6~100 公里,为一组密集几条东西向断裂,宽度不清,切割了古生界及其以后的地层。

北西向断裂:规模较小,长 5~40 公里,推测有一组近平行的断裂;沈塘断裂,雷州塘至调傥断裂,湖仔断裂,分界岭至顶岭断裂,迈东坡断裂,木至包西港断裂,平湖至尖山断裂,田洋至片云岭断裂,昌全断裂,主要分布在徐闻县,海康县西部地区。

(三)基底凹陷及突起有湛江凹陷,乌石凹陷,纪家凹陷,锦和凹陷,前山凹陷,东海岛凹陷,螺岗岭凹陷,迈陈凹陷,雷北凸起,雷南斜坡等。凹陷以东西向分布为主,沉积了第三系地层。

根据区域地质构造图及区域地质图,四会一吴川断裂带从场区从南西往北东穿过。查阅中国地震局网"全国活动断层矢量图"及广东省地震局相关资料,该断裂为发震活动性断裂。根据区域地质资料、地质调查及钻探揭示,拟建场区5km 以内发现有活动性断层,场地位于抗震设防 7 度区,地震动峰值加速度为0.10g,工程近场区历史上未发生过 M≥6 级地震,据《建筑抗震设计规范》4.1.7条,本区抗震设防属 7 度,可不考虑断裂错动对地面建筑的影响。总体上场地区域构造稳定性较差。

4.1.5.2 地层岩性

项目周边主要为连片鱼塘,局部区域土层长期浸水,呈饱和状态,鱼塘底质主要为淤泥或淤泥质土,在人为排水的情况下可见底部淤泥,鱼塘底质淤泥主要由围塘历史建设时的人工素填土以及历史河漫相沉积,在水流环境下沉积的细粒土等形成,鱼塘底质淤泥大部分呈灰色,土质相对较为均匀,且由于长期鱼塘养殖,含有机质。

根据区域地质资料,本项目所处区域出露地层由新至老依次为:

- (1) 第四系海漫滩沉积(Qe^m)含砂淤泥夹中细砂;含砂淤泥,灰褐色,软塑-流塑,稍有光滑,干强度和韧性中等,土质不均,含砂,具臭味;中细砂,灰白色,稍密,饱和,砂质较均,主要矿物成分为石英、长石。分布在场区大部区域,厚度约3.0~5.0m。
- (2)第四系海成风成(Qe^{meol})中细砂夹淤泥质粘土:灰白色,饱和,中密,砂质不均匀,局部夹亚砂土。厚度约5.0~8.0m,分布在场区大部区域。
- (3)第四系湛江组(Q_az)砂砾层夹粘土层:杂色,中密-密实状,饱和状态,以细砾为主,粒径一般为0.2-1.0cm,母岩成分为强风化泥岩、砂岩。该地层为下伏地层,在整个场区均有分布,厚度>100m。

4.1.5.3 不良地质作用以及特殊性岩土

(1) 不良地质作用

场地及周边未见不良地质灾害发育。

(2) 特殊性软土

根据现场调查资料,场区分布有连片的围塘,局部区域土层长期浸水,呈饱和状态。区域内存在软土,主要表现为淤泥或者淤泥质土。

4.2 工程区域自然资源概况

4.2.1 红树林资源状况

4.2.1.1 湛江市红树林资源

1990年1月,广东省人民政府以粤办函〔1990〕13号文批准成立湛江红树林省级自然保护区,主要保护对象为沿海滩涂红树林及鸟类。1992年经广东省林业厅批准,在廉江市高桥镇设立保护区管理站,以管理廉江市的高桥、车板两镇的红树林为主,管辖面积 2000 公顷。1995年,由湛江市人民政府申请扩大保护区管理范围和面积,由省级升为国家级。1997年12月8日,国务院国函〔1997〕109号文批准建立广东湛江红树林国家级自然保护区。2002年1月1日,湛江红树林湿地又被正式批准列入国际湿地名录。广东湛江红树林国家级自然保护区位于中国大陆最南端,广东省雷州半岛沿海滩涂,跨徐闻、雷州、遂溪、廉江、吴川五县(市)以及麻章、坡头、东海、霞山四区,呈分散状带状分布。东至坡头区乾塘镇的大沙墩,西至雷州市企水镇的企水港,南至徐闻县五里乡仕尾村鱼尾海湾,北至廉江市高桥镇高桥河河口咸淡水交界处。地理坐标为 109°40′~110°35′E,20°14′~21°35′N 的沿海地带,总面积 20278.8hm²。保护区管理机构名称为"广东湛江红树林国家级自然保护区管理局"。

湛江红树林国家级自然保护区是我国生物多样性保护的关键性地区和国际湿地生态系统就地保护的重要基地。目前湛江红树林国家级自然保护区共记录到红树植物 26 种,其中真红树植物 15 种,半红树植物 11 种;广东省珍稀濒危红植或半红树物种共 8 种:包括榄李(Lumnitzera racemose)、角果木(Ceriops tagal)、小花老鼠簕(Acanthus ebracteatus)、尖叶卤蕨(Acrostichum speciosum)、银叶树(Heritiera littoralis)、玉蕊(Barringtonia racemosa)、海滨猫尾木(Dolichandrone spathacea (L.f.) Seem.)和钝叶臭黄荆(Premna obtusifolia)。

湛江市红树林群系中,白骨壤群系的分布面积最大,其次为无瓣海桑群系, 再次为红海榄群系、桐花树群系、木榄群系和秋茄群系,其他群系面积较小。

湛江红树林群落类型(群丛)中白骨壤群落的分布面积最大,其次为无瓣海桑-白骨壤群落,再次为无瓣海桑群落、白骨壤-桐花树群落、无瓣海桑-桐花树、红海榄+白骨壤群落、红海榄+秋茄-桐花树群落、桐花树群落等,老鼠簕群落、角果木+红海榄-白骨壤群落、拉关木群落所占面积较小。

图 4.2.1-1 广东湛江红树林国家级自然保护区分布图

4.2.2 海洋交通资源

(1) 港口资源

湛江市拥有大小港湾 107 处,港口资源优势最为突出的是湛江湾、海安港和流沙湾。湛江市港口主要有调顺岛、坡头、廉江、遂溪、雷州、徐闻等 9 个港区。除此之外,湛江还有大小渔港 32 处,其中硇洲渔港被确定为国家中心渔港,企

水渔港为国家一级渔港,草潭渔港为省一级渔港。此外还有北潭、龙头沙、江洪、 三吉、乌石等重要渔港。目前渔港都已经具有一定建设规模,是海洋捕捞的重要 基地之一。

距离本项目最近的港口为项目东北面的湛江港。

湛江港是我国大西南地区货物进出口的主要通道,是国内外著名的天然良港, 素以"大、深、阔、掩护好"闻名。

湛江港自开港以来,发展迅速,已成为中国沿海 25 个主要港口之一、"一带一路"战略支点港口、西南沿海港口群的主体港、中西部地区货物进出口的主通道和中国南方能源、原材料等大宗散货的主要流通中心。

湛江港的自然条件十分优越,可利用岸线长,东起鉴江口、西至雷州市界,包括湛江市区、郊区、沿海地区,岸线长度 359.3km,占全市岸线的 31.1%,湾内水深、港阔、风浪小,泥沙回淤少,主航道水深 10.5m 以上。

截至 2020 年底,湛江港拥有调顺岛、霞海、霞山、宝满、东海岛、坡头、廉江、遂溪、徐闻等 11 个港区,形成生产性泊位岸线总长 15.9km、泊位 147 个,其中万吨级以上深水泊位 42 个,综合年通过能力 3.45 亿 t,其中集装箱 80 万 TEU (折合 960 万 t),滚装汽车 628 万辆 (折合 12450 万 t),旅客通过能力 3178 万人次。

湛江港湾内有万 t 级以上常用锚地 18 处,小型船舶锚泊区 8 处,湾外另设万 t 级以上锚地 3 处,均设在雷州湾之外:

- 1)第一引航锚地(万 t 级),以 20°58′03″N,110°37′18″E 为圆心,以 740m 为半径的圆形水域内,水深 12.8m,泥底,可供 3 艘 5 万 t 级船舶锚泊。
- 2) 10 万 t 级引航锚地,位于龙腾航道入口处东南约 16.8km 处,以 20°57′00″N,111°00′00″E 为中心,半径 1.5 海里的水域范围,面积为 24.24km²,水深约 20m,底质为淤泥,可供 33 艘 10 万 t 级船舶锚泊。
- 3) 30 万 t 级过驳锚地(航道建成后改为引航锚地),位于进港航道入口处东南约 30km,以 20°57′00″N,111°10′00″E为中心,半径 3 海里的水域范围,面积为 96.98km²,锚地水深 30~33m,底质为沙泥,可供 9 艘 30 万 t 级船舶候潮锚泊。

目前湛江港主航道底标高:外航道为 21.6m;内航道为 21.9m;30 万吨级船舶可乘潮进出。湛江港已成为华南沿海航运条件最好的港口。

(2) 航道资源

湛江市拥有湛江港航道、海安港航道、粤海铁路北港航道、流沙港航道等深水航道,还包括外罗、安铺、乌石、营仔等通向渔港和内河的小型船舶通航航道。

4.2.3 岛礁资源

据统计,湛江共有大大小小 104 个岛屿(含暗沙),其中最为有名的为"五岛一湾":特呈岛、南三岛、东海岛、硇洲岛、南屏岛和湛江湾,总面积 1130.68 平方千米,海岛面积 475 平方千米,海域面积约 515 平方千米,园区海岸线长达 241 千米。

其中,东海岛面积达 289.49 平方千米,是广东第一大岛,距湛江市区中心约 1 小时车程,岛上地势平坦,植被覆盖率超过 50%,拥有中国第一长滩,已开发为省级滨海旅游示范景区,是湛江的现代工业新城,也是鉴江供水工程的主要供水地:

南三岛面积 123.4 平方千米,是广东省第二大岛,建有南三大桥与市区相连, 交通便捷,岛上沙滩绵长,风光秀丽,植被覆盖率超过 50%,开发强度较低,适 宜开发海洋休闲娱乐项目,鉴江供水工程横穿全岛,水资源能充分保障。

硇洲岛面积 56 平方千米,是中国第一大火山岛,火山地貌景观独特,历史遗迹众多,全岛植被覆盖率超过 75%,以农业开发为主;

特呈岛面积 3.6 平方千米, 距市区最近, 仅 8 分钟船程, 全岛植被覆盖率超过 75%, 红树林、温泉和海洋湿地资源丰富独特, 是国家级海洋公园,已开发为省级滨海旅游示范景区:

南屏岛面积约 2.58 平方千米,是首批列入国家开发目录的无人居住海岛, 尚未讲行任何开发。

岛屿基本均属堆积地貌,植被茂密,地形较缓。各岛古海蚀阶地和海蚀蘑菇等景观随处可见。

4.2.4 旅游资源

湛江市于1959年获得花园城市的称号。全市有104个岛屿、暗沙。拥有全国最大的红树林保护区。海岸线绵长曲折,水清浪静,大海与沙滩、岩石、林带构成美丽的南亚热带海滨风光,具有成为全国最优良的滨海旅游度假基地的发展潜质。

湛江海岸线砂质岸线绵长,有13段优质沙滩(王村港、吉兆湾、吴阳、南三岛、东海岛、硇洲岛东岸、箩斗沙岛、海安白沙湾、乌石北拳半岛、企水赤豆寮岛、纪家盘龙湾、江洪仙群岛、草潭角头沙)可供旅游开发,总长达150多km。

湛江市拥有迷人的海滩、岛屿和南亚热带风光,已开辟的滨海旅游区有东海岛龙海天、吴川吉兆、南三岛、徐闻白沙湾,其中东海岛龙海天和吴川吉兆是省级旅游区。

南三岛2014年被评为广东"十大美丽海岛",岛内人文资源丰富,有广州湾靖海宫、越王祠、南三灯塔、龙女庙、洗吴庙、红坎岭法军南营旧址等古迹。目前南三岛正全力推进高端旅游项目的开发,未来南三岛将成为以滨海度假、冬休养老、邮轮母港为特色,集高端居住、商务会议、休闲度假、养生康体、主题游乐于一体的多元化亚热带滨海休闲海岛。

硇洲岛: 硇洲岛是国家级试点镇中唯一的海岛镇,全岛陆地面积56km²,海岸线长43.98km,是湛江港的天然屏障。硇洲岛是湛江市的岛外之岛,风景秀丽,一年四季气候宜人。这里人杰地灵,物产丰富,盛产闻名世界的硇洲鲍鱼、龙虾等名贵水产。

硇洲岛上有一座百年古灯塔——硇洲灯塔。此灯塔是世界目前仅有的两座水晶磨镜灯塔之一(与英国伦敦灯塔齐名),也是世界目前的三大灯塔之一。硇洲灯塔是国家级航海标志,现为全国重点文物保护单位。此外,其人文历史景观及自然景观还有宋王井、窦振彪墓、那晏海石滩、东海头海底世界、津前天后宫等。

4.2.5 矿产资源

湛江市矿产资源较丰富。据《湛江市矿产资源总体规划(2021-2025年)》, 湛江市全市共发现矿产种类 41 种,矿产地(点)348 处。截至 2020 年底,已查明资源储量的矿产种类 19 种,矿产地 65 处。金属矿产资源主要分布在廉江,以钛、铁、铅、锌、钨、金、银为主要矿产,共伴生铜、钼等矿种。徐闻县柳尾砂钛矿、廉江市南和钨钼矿和廉江市庞西垌矿区银矿床为中型矿床,其余为小型矿床。经长期开采和资源消耗,金属矿产已停止开采。

截至 2020 年,湛江市全市矿山企业 42 个,金属矿山 1 个,非金属矿山 41 个;大型矿山 3 个,中型矿山 12 个,小型及以下矿山 27 个。生产矿山 27 个,以饰面用花岗岩、建筑用花岗岩、建筑用砂、高岭土、玻璃用砂和矿泉水等为主。

矿山企业从业人员 1303 人,年产矿石总量 2139 万吨,实现矿业产值 4.92 亿元,综合利用产值 2184 万元,利润 3018 万元。其中建筑石料产量 1375.782 万立方米,占总产量的 98.99%。综合利用产值较高和产生利润较多的矿种是建筑用花岗岩、饰面用花岗岩、建筑用玄武岩、建筑用砂和玻璃用砂。

4.2.5 渔业资源

湛江市地处热带、亚热带的过渡区域,终年水温较高,光线充足、水质肥沃,海洋环境多种多样,生物种类也非常丰富,曾经记录到的生物种类达到了 2000 多种,其中鱼类 520 种,贝类 547 种,虾类 28 种。

湛江是渔业大市,渔业资源丰富。全市有渔业乡镇 15 个,渔业村 225 个渔业人口 46.03 万人,渔民人均收入 25584 元。其中以捕捞为主的渔业村 217 个,捕捞渔业人口 25.26 万人,海洋捕捞渔船 1.57 万艘、功率 33.64 万 kW。

湛江的对虾引领世界行情,湛江拥有"中国对虾之都""中国海鲜美食之都""国家级出口水产品质量安全示范区""国家级水海产品外贸示范基地"和"国家级海洋生态文明建设示范区"等多张水产业国家级名片。湛江市拥有水产种苗场600多家,深水网箱养殖基地3个,水产品加工企业187家,涉海高新技术企业12家,海洋科研机构30多家。海洋渔业已成为湛江体系最完善、功能最配套、从业人员最集中的集群产业之一,已经形成水产种苗培育和养殖、捕捞、加工、流通、研发及水产饲料等协作配套的较为完整的产业链。

4.2.6 白海豚资源

本海域的珍稀濒危水生生物主要论述中华白海豚。

中华白海豚身体修长呈纺锤形,喙突出狭长,刚出生的白海豚约 1m 长,性成熟个体体长 2.0~2.5m,最长达 2.7m,体重 200~250kg;背鳍突出,位于近中央处,呈后倾三角形;胸鳍较圆浑,基部较宽,运动极为灵活;尾鳍呈水平状,健壮有力,以中央缺刻分成左右对称的两叶,有利于其快速游泳。眼睛乌黑发亮,上、下颌的每侧都有 20~37 枚圆锥形的同型齿(上颌齿数=30~36 枚;下颌齿数=24~37),齿列稀疏。吻部狭、尖而长,长度不到体长的十分之一。喙与额部之间被一道"V"形沟明显地隔开。脊椎骨相对较少,椎体较长。鳍肢上具有 5 指。全身都呈象牙色或乳白色,背部散布有许多细小的灰黑色斑点,有的腹部略带粉红色,短小的背鳍、细而圆的胸鳍和匀称的三角形尾鳍都是近似淡红色的棕

灰色。中华白海豚不集成大群,常 3~5 只在一起,或者单独活动。除了母亲及幼豚,白海豚组群不会有固定的成员。它们的群居结构非常有弹性,而组群的成员也时常更换。根据记录,组群最多可有 23 条白海豚,而平均为 4 条。性情活泼,在风和日丽的天气,常在水面跳跃嬉戏,有时甚至将全身跃出水面近 1 m 高。游泳的速度很快,有时可达每小时 12 海里以上。在各种渔船中,白海豚特别喜欢在双拖船后觅食,而在双拖船后的海豚组群也比其他的大很多。中华白海豚与陆生哺乳动物一样肺部发达,用肺呼吸,呼吸的时间间隔很不规律,有时为 3~5 秒钟,有时为 10~20 秒,也有时长达 1~2 分钟以上。外呼吸孔呈半月形开放于头额顶端,呼吸时头部与背部露出水面,直接呼吸空气中的氧气,并发出"Chi-Chi-"的喷气声。

雷州湾是中国沿岸中华白海豚的一个十分重要的栖息地。据估算,湛江港湾至雷州湾海域现有中华白海豚约 300 头,是目前国内第五处中华白海豚最健康种群区。雷州湾的中华白海豚是在中国沿岸新发现的一个种群,其种群数量仅次于珠江口,集中度超过珠江口。2007 年,湛江市政府批准建立雷州湾中华白海豚市级自然保护区(湛府函〔2007〕169 号),总面积 20598 公顷,其中:核心区面积 686 公顷、占保护区总面积的 33.3%;缓冲区面积 1372 公顷、占保护区总面积的 33.3%;缓冲区面积 1372 公顷、占保护区总面积的 66.6%。雷州湾白海豚保护区地理坐标为(1)110°26′E、20°46′N;(2)110°29′E、20°46′N;(3)110°29′E、20°44′N;(4)110°26′E、20°44′N,主要保护品种:中华白海豚、文昌鱼、中国鲎、大黄鱼和其它海洋哺乳动物及海洋生态环境。 从下图可以看出,湛江湾中华白海豚分布范围最广,它们通过东海岛和硇洲岛之间的水道在湛江湾和雷州湾之间往返。迄今还没有在硇洲岛东侧水域发现中华白海豚。考察期间发现中华白海豚活动范围最南在外罗水域,最北到达鉴江口水域。

图 4.2.6-1 湛江东部海域中华白海豚活动路线图

4.2.7 水鸟资源

湛江红树林国家级自然保护区有大量的水鸟栖息和越冬,保护区的红树林为它们提供了大量的食物和良好的自然环境。

2002年1月,保护区被列入"拉姆萨尔公约"国际重要湿地名录,成为我国生物多样性保护的关键性地区和国际湿地生态系统就地保护的重要基地。2005年保护区被确定为国家级野生动物(鸟类)疫源疫病监测点、国家级沿海防护林

监测点。

2002-2003 年,保护区与广东省濒危动物研究所合作,进行了首次湛江红树林地区的鸟类本底资源清查,直至 2012 年,保护区每年于候鸟迁徙至湛江的时间(一月份)进行专项水鸟监测调查,结果表明高桥、西湾、北潭、附城、南山五个监测站位调查种类数量趋于稳定,变化幅度不大。

保护区内除了众多的鸥形目、雀形目等留鸟外,每年秋冬季,有大量的(包括鹤类、鹳类、鹭类、猛禽类等)从日本、西伯利亚或中国的北方地区飞往澳大利亚的途中在保护区停留的候鸟,使保护区成为中日、中澳国际候鸟的通道。根据广东省湛江红树林国家自然保护区管理局的调查,2010年至2014年的5年冬季,共记录到水鸟61种,48297只,隶属于8目11科35属。红嘴鸥、小白鹭、黑腹滨鹬为优势种。在记录的鸟类中,有1种被列入IUCN红色名录,且是易危种,即黑嘴鸥,7种鸟类被列入Cites保护名录(其中3种为附录II、4种为附录III),31种鸟类被列入中日候鸟保护协定名录,23种鸟类被列入中澳候鸟保护协定名录,19种鸟类被列入国家三有名录,20种属于IUCN红色名录中的无危种。

4.2.8 主要经济鱼种"三场一通"分布

根据农业部公告第 189 号《中国海洋渔业水域图》(第一批)南海区渔业水域图(第一批),南海区渔业水域及项目所在海域"三场一通"情况如下。

(1) 南海鱼类产卵场

南海鱼类产卵场分布见图 4.2.8-1 和图 4.2.8-2。

本工程不位于南海中上层鱼类产卵场内,工程也不位于南海底层、近底层鱼 类产卵场内。

(2) 南海北部幼鱼繁育场保护区

南海北部幼鱼繁育场保护区位于南海北部及北部湾沿岸 40m 等深线水域(图 4.2.8-3),保护期为 1-12 月。管理要求为禁止在保护区内进行底拖网作业。

本项目位于南海北部幼鱼繁育场保护区内。

(3) 幼鱼幼虾保护区

根据《南海区水产资源保护示意图》(1985年8月)确定、2002年农业部发布189号文公布的幼鱼幼虾保护区范围,本项目所处海域主要为其中的黄花鱼

幼鱼保护区(详见图 4.2.8-4),保护区时间为每年的 3 月 1 日至 5 月 31 日。在 禁渔期间,禁止底拖网渔船、拖虾渔船进入上述海域内生产。

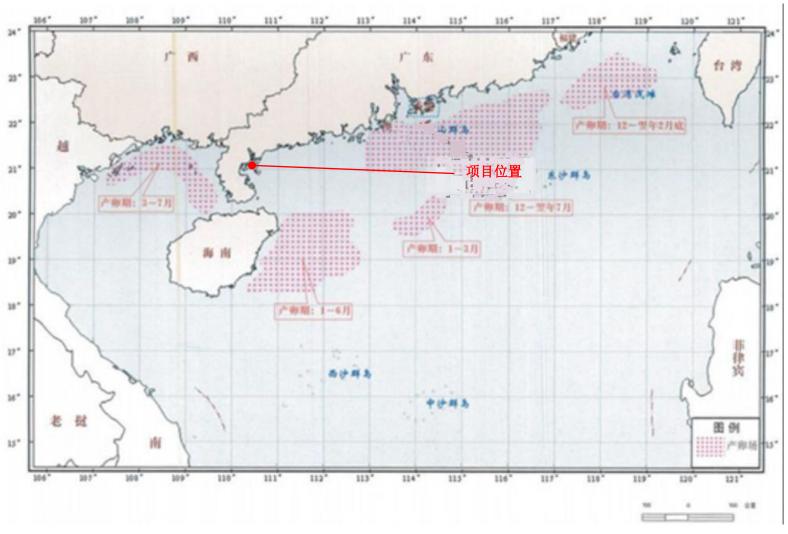


图 4.2.8-1 南海中上层鱼类产卵场示意图

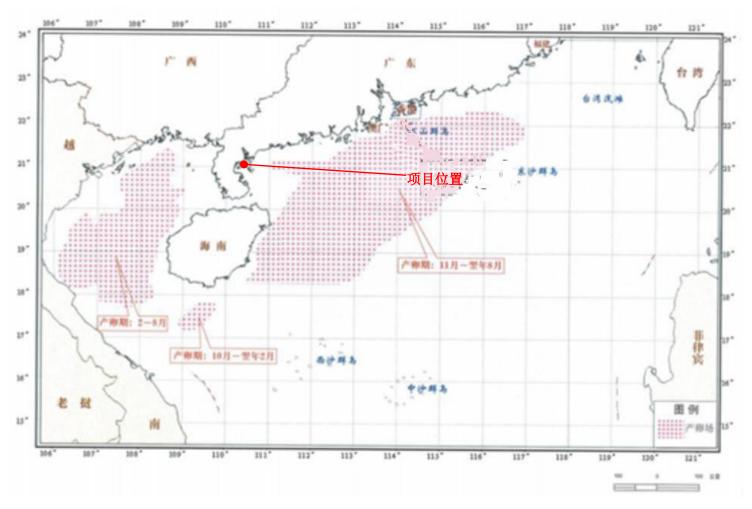


图 4.2.8-2 南海底层、近底层鱼类产卵场示意图

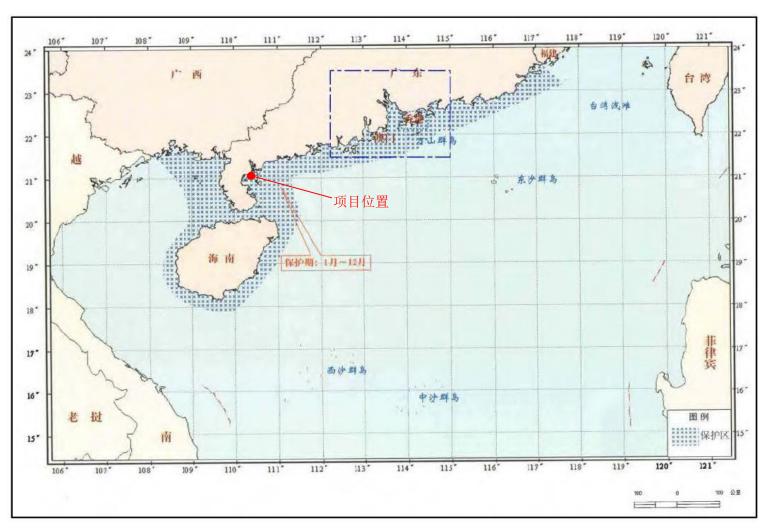


图 4.2.8-3 南海北部幼鱼繁育场保护区示意图

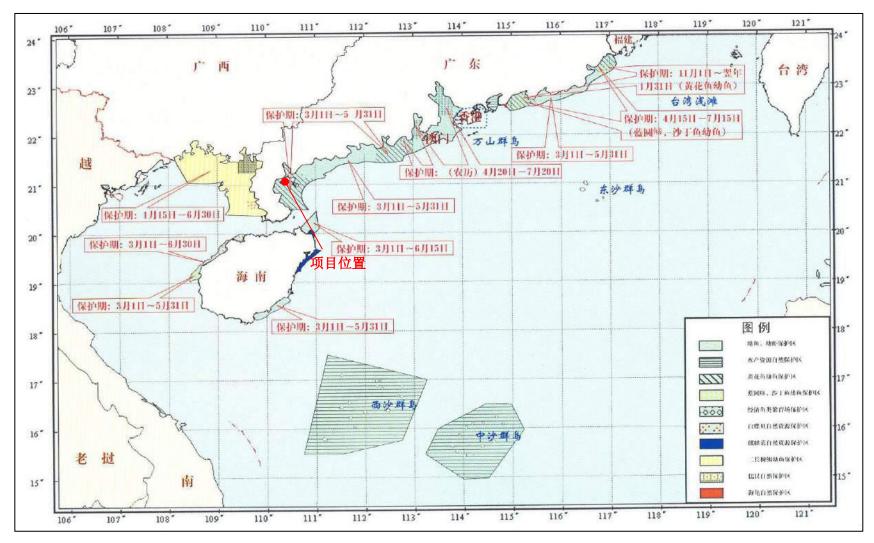


图 4.2.8-4 南海国家级及省级渔业品种保护区分布图

4.3 区域开发利用现状

4.3.1 社会经济概况

4.3.1.1 湛江市社会经济概况

根据《2023 年湛江国民经济和社会发展统计公报》,2023 年湛江实现地区生产总值(初步核算数)3793.59 亿元,比上年增长3.0%。其中,第一产业增加值706.91 亿元,增长3.8%,对地区生产总值增长的贡献率为25.5%;第二产业增加值1454.62 亿元,增长0.5%,对地区生产总值增长的贡献率为6.1%;第三产业增加值1632.06 亿元,增长4.5%,对地区生产总值增长的贡献率为68.4%。三次产业结构比重为18.6:38.3:43.1。人均地区生产总值53757元(按年平均汇率折算为7629美元),增长2.7%。

2023 年年末,全市常住人口 707.84 万人,比上年末增加 4.30 万人,其中,城镇常住人口 340.27 万人,占常住人口比重(常住人口城镇化率)48.07%,比上年末提高 0.76 个百分点。全年出生人口 7.42 万人,出生率 10.51‰;死亡人口 3.54 万人,死亡率 5.02‰;自然增长人口 3.88 万人,自然增长率 5.49‰。

全年城镇新增就业 6.35 万人,城镇失业人员再就业 3.45 万人。全年居民消费价格比上年上涨 0.1%。高技术制造业增加值比上年下降 1.3%,占规模以上工业增加值比重 1.2%。全年规模以上服务业中,高技术服务业营业收入增长 5.4%。全年高技术制造业投资增长 40.2%,占固定资产投资比重 0.7%。

全市空气质量优良天数比例为97.3%,市区空气质量综合指数(AQI)为2.5%。

全部工业增加值比上年下降 0.6%。规模以上工业增加值下降 0.7%。高技术制造业增加值比上年下降 1.3%,占规模以上工业增加值比重 1.2%。先进制造业增加值比上年下降 2.1%,占规模以上工业增加值的比重 51.6%。优势传统产业增加值比上年下降 0.6%,六大高耗能行业增加值比上年下降 0.9%。

全年规模以上工业实现利润总额 138.57 亿元,比上年下降 20.4%。

全年批发和零售业增加值 309.31 亿元,比上年增长 3.2%;全年规模以上服务业企业营业收入比上年增长 2.6%;利润总额增长 25.9%。

全年货物运输总量 2.38 亿吨,比上年增长 7.6%。全年旅客运输总量 3855 万人,比上年增长 42.6%。全年社会消费品零售总额 1950.54 亿元,比上年增长 6.6%。全年固定资产投资比上年增长 3.2%。全年房地产开发投资 327.64 亿元,

比上年下降 1.7%。全年货物进出口总额 701.33 亿元,比上年增长 14.7%。其中, 出口 205.27 亿元,增长 2.4%;进口 496.06 亿元,增长 20.7%。

全年全市地方一般公共预算收入 155.61 亿元,比上年增长 5.9%(自然口径); 其中,税收收入 90.37 亿元,增长 8.6%(自然口径)。全年一般公共预算支出 543.33 亿元,增长 4.1%。全年全市居民人均可支配收入 29733 元,比上年增长 3.0%。全年全市居民人均消费支出 19769 元,比上年增长 3.3%。分城乡看,城镇居民人均消费支出 23737 元,增长 1.3%;农村居民人均消费支出 16208 元,增长 5.1%。年末全市参加城镇职工基本养老保险(含离退休)112.48 万人,比上年增长 1.7%。

全年接待旅游总人数 2349.11 万人次,比上年增长 85.5%,其中,接待国内游客人数 2334.44 万人次,增长 84.4%;接待境外游客人数 14.67 万人次,增长 1879.8%。旅游总收入 250.07 亿元,增长 121.2%;国际旅游外汇收入 3876.76 万美元,增长 589.5%。

全年规模以上工业综合能源消费量 2305.45 万吨标准煤,比上年增长 9.4%。 全社会用电量 307.03 亿千瓦时,增长 4.2%。

全市近岸海域海水质量达到一类海水水质标准的海域面积占72.8%,二类海水占23.0%,三类海水占2.0%,四类海水占1.3%,劣四类海水占0.9%。

市区大气中二氧化硫、二氧化氮、 PM_{10} 、 $PM_{2.5}$ 日平均值分别为 8 微克/立方米、12 微克/立方米、33 微克/立方米、20 微克/立方米,符合国家《环境空气质量标准》(GB3095-2012)二级标准。市区空气质量综合指数(AQI)为 2.5,其中,达到优($AQI \le 50$)的天数占全年比重 62.7%,达到良($51 < AQI \le 100$)的天数占全年比重 34.5%,空气质量稳居全国城市前列。

市区区域环境噪声平均等效声级为 54.4dB, 交通噪声平均等效声级 69.5dB。全市已建成县级以上生活污水处理厂 5 个, 污水日处理能力达 70.90 万吨。城市生活垃圾无害化处理率为 100%。城市集中式供水水源水质达标率 100%。

全年完成迹地林更新面积 690 公顷, 低产低效林改造面积 322 公顷, 宜林荒山造林面积 547 公顷, 封山育林面积 336 公顷。全市共有自然保护区 19 个,总面积 11.05 万公顷。其中, 国家级自然保护区 3 个, 国家地质公园 1 个。

4.3.1.2 经开区社会经济概况

根据《2021年湛江经济技术开发区国民经济和社会发展统计公报》,2021年末,2021年末,全区常住人口34.60万人,比上年末增加0.49万人,其中城镇常住人口22.69万人,占常住人口比重(常住人口城镇化率)65.58%,比上年末提高0.9个百分点。

经市统计局统一核算,2021年经开区实现地区生产总值(初步核算数)693.99亿元,比上年增长16.8%。其中,第一产业增加值20.73亿元,增长0.4%,对地区生产总值增长的贡献率为0.1%;第二产业增加值498.08亿元,增长24.2%,对地区生产总值增长的贡献率为92.0%;第三产业增加值175.83亿元,增长4.1%,对地区生产总值增长的贡献率为7.9%。三次产业结构比重为2.9:71.8:25.3,第二产业比重提高7.9个百分点。人均地区生产总值202005元,增长15.7%。

全年全区地方一般公共预算收入 15.81 亿元,比上年增长 29.6%; 其中,税收收入 13.63 亿元,增长 43.9%。全年一般公共预算支出 24.38 亿元,下降 2.6%。其中,教育支出 6.52 亿元,增长 6.5%; 卫生健康支出 1.51 亿元,增长 49.2%; 社会保障和就业支出 4.35 亿元,增长 10.2%。民生类支出 17.48 亿元,占一般公共预算支出比重 71.7%。

全年全部工业增加值比上年增长 25.3%。规模以上工业增加值增长 33.0%,其中,国有控股企业增长 37.5%,外商及港澳台投资企业增长 52.9%,股份制企业增长 12.1%。分轻重工业看,轻工业增长 8.9%,重工业增长 36.5%。分企业规模看,大型企业增长 69.9%,中型企业下降 91.2%,小型企业增长 11.7%,微型企业增长 42.5%。

全年批发业和零售业增加值 20.54 亿元,比上年增长 7.8%;交通运输、仓储和邮政业增加值 5.21 亿元,增长 13.6%;住宿和餐饮业增加值 5.28 亿元,增长 11.6%;金融业增加值 36.92 亿元,增长 0.2%;房地产业增加值 25.12 亿元,下降 5.1%。现代服务业增加值 116.19 亿元,增长 0.1%。

全年规模以上服务企业实现营业收入 47.44 亿元,比上年增长 12.4%; 利润 总额 0.48 亿元,下降 53.5%。分行业看,交通运输、仓储和邮政业增长 32.7%,信息传输、软件和信息技术服务业增长 1.3%,租赁和商务服务业增长 15.1%,科学研究和技术服务业增长 38.3%,居民服务、修理和其他服务业增长 16.6%,卫生和社会工作增长 27.5%,文化、体育和娱乐业增长 22.4%。

全年完成固定资产投资320.19亿元,比上年增长10.2%。其中项目投资226.47亿元,增长1.5%。全年房地产开发投资93.73亿元,增长38.7%;商品房销售面积63.79万平方米,下降13.7%。商品房销售额87.61亿元,下降14.4%。

全年社会消费品零售总额 107.45 亿元,比上年增长 7.4%。分经营地看,城镇消费品零售额 101.81 亿元,增长 7.2%;乡村消费品零售额 5.64 亿元,增长 10.6%。分消费形态看,商品零售 92.82 亿元,增长 6.8%;餐饮收入 14.63 亿元,增长 10.7%。

全年外贸进出口额 254.5 亿元,比上年增长 35.4%。其中:出口总额 80.4 亿元,增长 17.1%;进口总额 174.1 亿元,增长 45.9%。实际利用外资金额 26.21 亿元,增长 582.6%。

全年全区居民人均可支配收入 35385 元,比上年增长 8.4%。分城乡看,城镇常住居民人均可支配收入 42979 元,增长 5.6%;农村常住居民人均可支配收入 21484 元,增长 8.6%。

全年全区居民人均消费支出 23598 元,增长 8.2%。分城乡看,城镇居民人均消费支出 27638 元,增长 4.7%;农村居民人均消费支出 16202 元,增长 11.9%。

2021年末,全区高新技术企业77家。技术研发机构41家,其中,省级重点实验室1家,省级新型研发机构2家,省级工程技术研发中心12家,省级企业技术中心7家,市级工程中心13家,市级企业技术开发机构6家。

4.3.2 项目周边海域开发利用现状

通过现场实勘调查以及资料收集信息,项目附近的海域开发利用活动主要为 开放式养殖、油气管道、红树林保护区、通明海海洋保护区、堵海大堤、东海岛 北部工业与城镇用海区、雷州湾农渔业区、湛江红树林国家级自然保护区和东雷 高速等。项目所在海域开发利用现状见图 4.3.2-1 和表 4.3.2-1。

序号	用海情况	权属情况	总面积 (公顷)	用海方式	与项目位置 和最近距离	备注
1	开放式养殖	当地村民		养殖	围塘周边	海图
2	油气管道	中石化粤西管 网有限公司		海底管道	北侧约 0.5km	确权资料
3	红树林保护区			红树林保 护区	项目占用	海图
4	通明海海洋保护 区			海洋保护 区	项目占用	海图
5	东海岛大桥	广东中交玉湛	4.9368	海上大桥	北侧约	确权资料

表 4.3.2-1 项目所在海域开发利用现状统计表

序号	用海情况	权属情况	总面积 (公顷)	用海方式	与项目位置 和最近距离	备注
		高速公路发展 有限公司			2.6km	
6	堵海大堤			填海	北侧约 2.8km	海图
7	通明海特大桥	广东省南粤交 通粤湛高速公 路管理中心		海上大桥	南侧约 4.2km	海图
9	东海岛南部工业 与城镇用海区			部工业与 城镇用海 区	南侧约 2.0km	海图
10	雷州湾农渔业区			农渔业区	南侧约 0.9km	海图

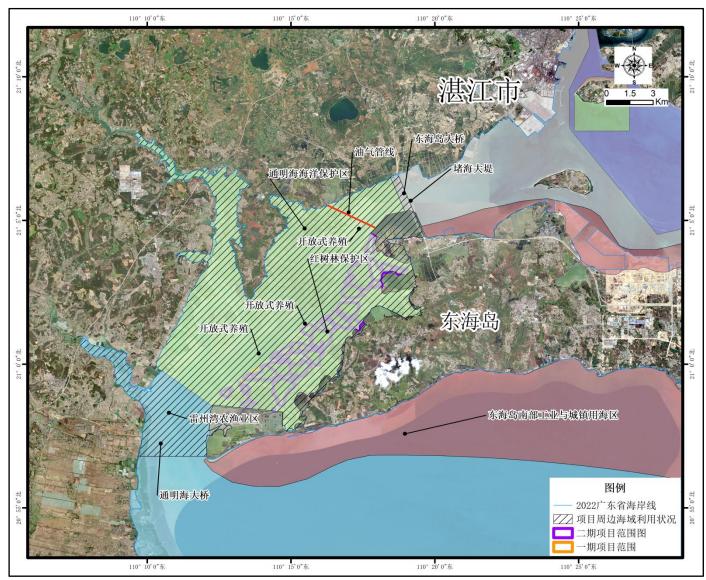


图 4.3.2-1 项目周边海域利用现状图

5 环境质量现状调查与评价

5.1 水文动力环境现状调查与评价

根据《海洋工程环境影响评价技术导则》(GB19485-2014)关于水文动力环境的调查要求: 1级评价项目一般不应少于 3 个断面,每条断面应布置 2-3 个调查站位。本项目水文动力调查为 1级评价;因此需设至少 3 个断面,每个断面至少 2 个站位。

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018),项目至少需要项目周边海域春、秋两季水文动力调查资料,调查资料有效时效应在最近5年内。

项目春季水文动力引自广州邦鑫海洋技术有限公司在通明海海域的水文动力调查结果。调查时间为 2021 年 4 月 26 日—2021 年 4 月 27 日,如"图 5.1.1-1 水文调查站位图"所示,在项目附近海域(环境影响评价范围内)共布设 3 个断面,每条断面布置 2 个调查站位,共布置 6 个站位,且时效在 5 年内,站位能满足《海洋工程环境影响评价技术导则》(GB19485-2014)要求。

项目秋季水文动力引自广州海兰图检测技术有限公司 2023 年 8 月 30 日到 2023 年 9 月 13 日在项目周边海域开展的水文动力调查资料,如"图 5.1.2-1 水文调查站位图"所示,在项目附近海域(环境影响评价范围内)共布设 3 个断面,每条断面布置 2 个调查站位,共布置 6 个站位,且时效在 5 年内,站位能满足《海洋工程环境影响评价技术导则》(GB19485-2014)要求。

5.1.1 春季水文动力环境现状调查与评价

海洋中由各种因素引起的海水运动称之为海流。通常又将海流分为由天体引潮力引起的潮流和由水文、气象等非天文因素引起的非潮流。它们在海洋中所占的成分因地因时而异。一般来说,大洋中的海流以非潮流为主,而我国近海的海流以潮流为主。

5.1.1.1 实测流场分析

本节内容引自广州邦鑫海洋技术有限公司在通明海海域的水文动力调查结果。调查时间为2021年4月26日—2021年4月27日,天气以晴为主;大潮期

间风向以偏东南风为主。

图 5.1.1-1 水文调查站位图

大潮期海流观测于 2021 年 4 月 26 日 9 时~2021 年 4 月 27 日 11 时期间进 行。根据上述图表分析如下:

各站层的流速值过程线多起伏,实测海流以潮流为主。总体而言,潮流受地 形影响明显,涨潮流从外海进入调查海域由西向到西北向,逐渐到东海岛西侧海 域转为北向到东北向;落潮流方向与涨潮流方向大致相反,东海岛西侧海域由西 南向到南向,逐渐到东海岛南侧海域东南向和东向为主: 受地形影响 C1 和 C2 站流速较大,各站表、中、底层的流向比较接近。C4 站可能受河口径流影响, 潮流方向以西南-东北向为主。

根据大潮期涨、落潮的统计结果,大潮期间涨、落潮流流速的平均值多在 26.8cm/s~63.3cm/s 之间。从涨、落潮的平均流速垂向分布来看,最大涨潮流平 均值为 61.1cm/s, 方向为 61.8°, 出现在 C1 站的表层: 最大落潮流速平均值为 63.3cm/s, 方向 232.0°, 出现在 C1 站的中层。

实测涨潮流的最大流速,其表、中、底层的流速值依次为93.4cm/s、92.3cm/s、 89.4cm/s, 流向分别为 62.2°、59.5°、54.9°, 均出现在 C1 站; 实测落潮流的最大 流速, 其表、中、底层的流速依次为 99.0 cm/s、92.2 cm/s、81.4 cm/s, 流向分别 为 43.0°、230.7°、224.1°分别出现在 C4 表层、C1 中层、C1 底层。

总体而言,各站层涨潮历时略大于落潮历时,可能受观测时间段涨潮时间略 长影响。

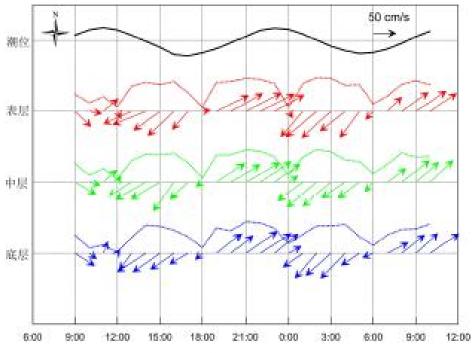


图 5.1.1-2 调查海域大潮 C1 站实测海流矢量图

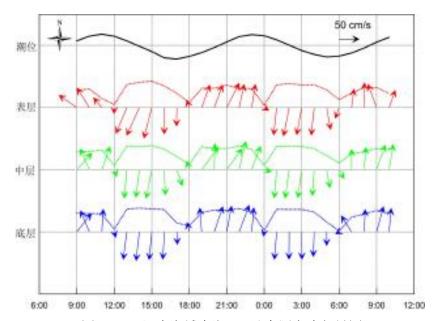


图 5.1.1-3 调查海域大潮 C2 站实测海流矢量图

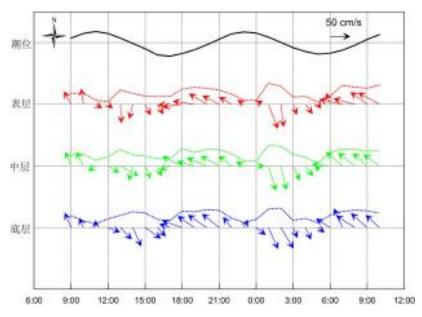


图 5.1.1-4 调查海域大潮 C3 站实测海流矢量图

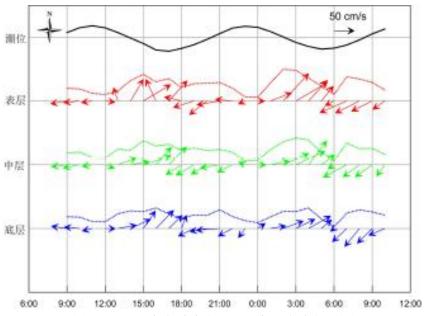


图 5.1.1-5 调查海域大潮 C4 站实测海流矢量图

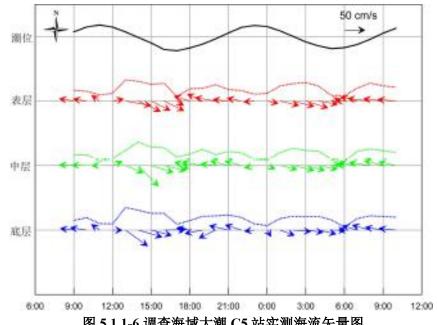


图 5.1.1-6 调查海域大潮 C5 站实测海流矢量图

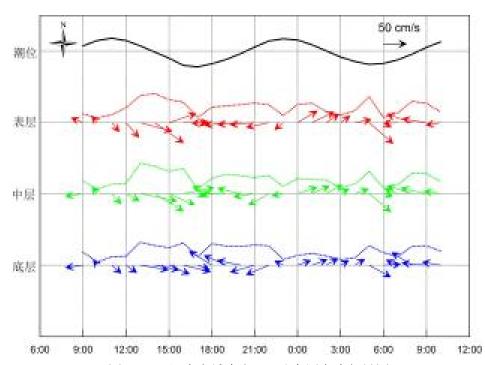


图 5.1.1-7 调查海域大潮 C6 站实测海流矢量图

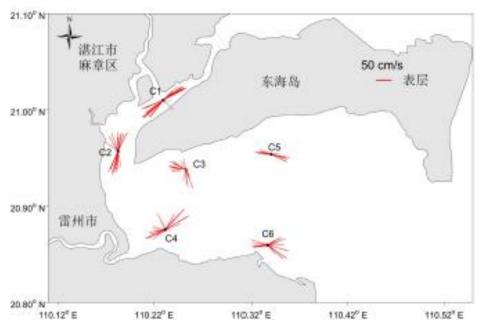


图 5.1.1-8 大潮海流玫瑰图 (表层)

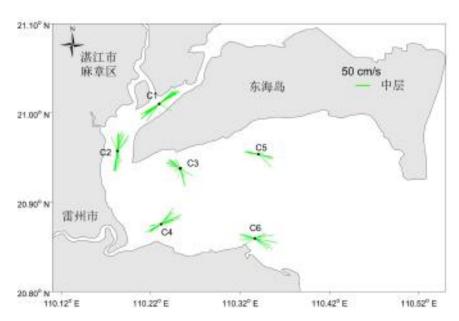


图 5.1.1-9 大潮海流玫瑰图 (中层)

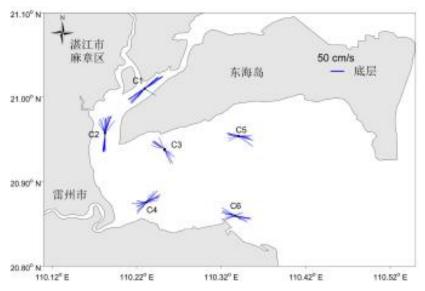


图 5.1.1-10 大潮海流玫瑰图 (底层)

5.1.1.2 潮流分析

余流通常指实测海流中扣除了周期性的潮流后的剩余部分,一般取周日海流观测资料中消去潮流后的平均值,它是风海流、密度流、潮汐余流等的综合反映,是由热盐效应和风等因素引起,岸线和地形对它有显著影响。下面根据本海域调查的 26H 海流实测资料,结合海面风场,分析调查海区的余流特征。

大潮余流量值介于 0.3~18.5cm/s 之间,最大余流出现在 C3 站表层,为 18.5cm/s, 方向 253.5°;最小余流出现在 C2 站底层,为 0.3cm/s,方向 185.7°。 就整个海域而言,调查期间余流较小,除 C3 外,余流方向以落潮流方向为主。

5.1.1.3 悬浮泥沙

悬浮泥沙浓度是一种随机性很强的变量,在时间与空间上变化很大。其变化与分布特征主要受泥沙来源、潮流、波浪、底质等诸多因素控制。通常近海泥沙来源主要有:河流入海泥沙、海岸海滩和岛屿侵蚀泥沙以及海洋生物残骸形成的泥沙。

为获取调查海域悬浮泥沙浓度分布变化情况,对悬浮泥沙进行了观测。悬沙 采样频率为每小时一次,采样层次为表、中、底三层。

据分析,各站表、中、底三层含沙量多数时间内较为接近,而在中层与底层的某些峰值普遍高于表层。从整体变化过程来看,各站含沙量一般不超过0.10kg/m³。大潮期,悬浮泥沙浓度最低值为0.0062kg/m³;悬浮泥沙浓度最大值为0.1093.02kg/m³,出现在C6站底层。

5.1.2 秋季水文动力环境现状调查与评价

5.1.2.1 实测流场分析

本节内容引自广州海兰图检测技术有限公司在通明海海域的水文动力调查结果。调查时间为 2023 年 8 月 30 日—2023 年 8 月 31 日,天气以晴为主。

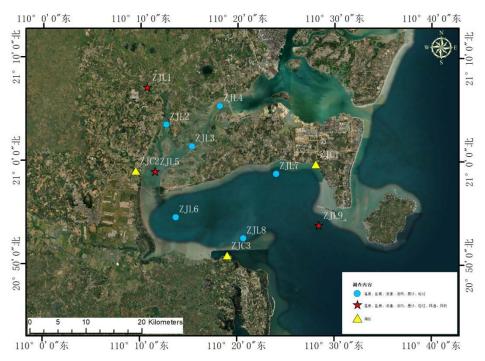


图 5.1.2-1 水文调查站位图

本次水文观测各观测站不同层次海流平面分布矢量图如图 5.1.2-2 至图 5.1.2-7 所示,图 5.1.2-8 至图 5.1.2-16 为各海流观测站不同层次海流过程矢量图。

从海流的流态来看,观测期内各站点海流表现出了明显的往复流的特征,从各站海流过程矢量图可以看出,各观测站各层潮流方向主要受局地的潮汐(半日潮区)的影响,该海区表现出了极强的规律性;在垂向结构上看,流速整体分布均匀,各层次的流速差异不大。

观测期间最大涨潮流速为 81.2cm/s,最大落潮流速为 134.5cm/s,出现在 ZJL8 站 0.2H 层和 ZJL9 站表层。最大涨潮和落潮平均流速分别为 49.1cm/s 和 71.6cm/s。在垂向结构上,各站点整体流速从上向下比较稳定,表现为流速大小从表层到底层依次减小;在水平上,表现出了全日潮区的潮汐特征,具有明显的周期性;且越靠近狭窄的通道处的站点流速越大(受到地形的挤压流速变大)。各观测站各层潮流方向主要受局地的潮汐(半日潮区)的影响,该海区表现出了极强的规律性;在垂向结构上看,流速整体分布均匀,各层次的流速差异不大。

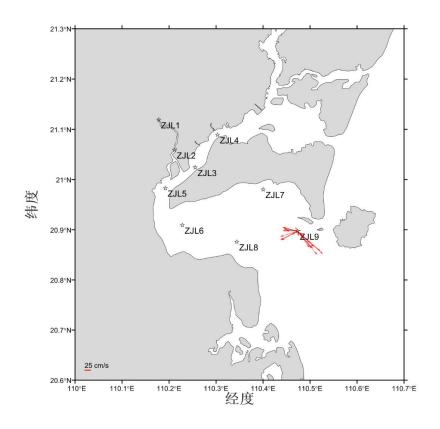


图 5.1.2-2 表层海流平面分布矢量图

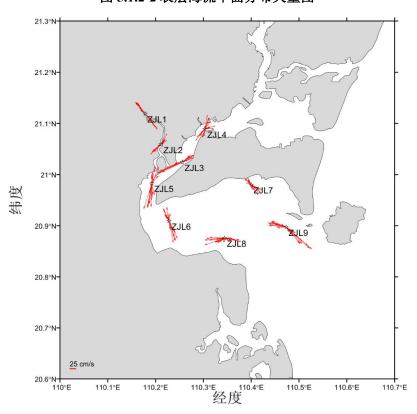


图 5.1.2-3 0.2H 层海流平面分布矢量图

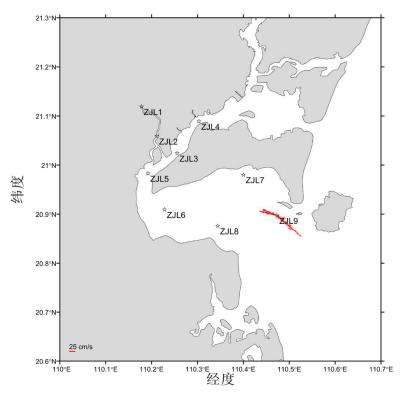


图 5.1.2-4 0.4H 层海流平面分布矢量图

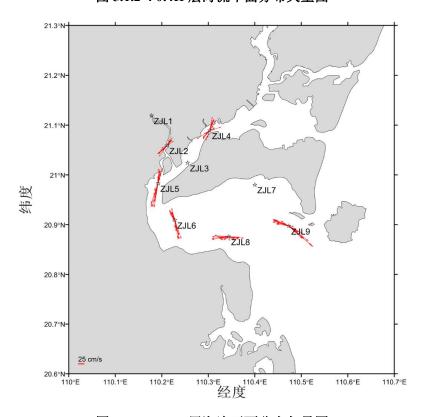


图 5.1.2-5 0.6H 层海流平面分布矢量图

171

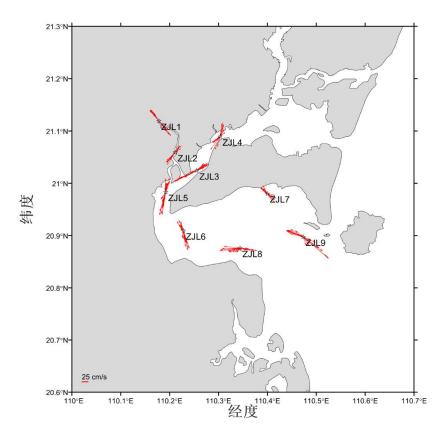


图 5.1.2-6 0.8H 层海流平面分布矢量图

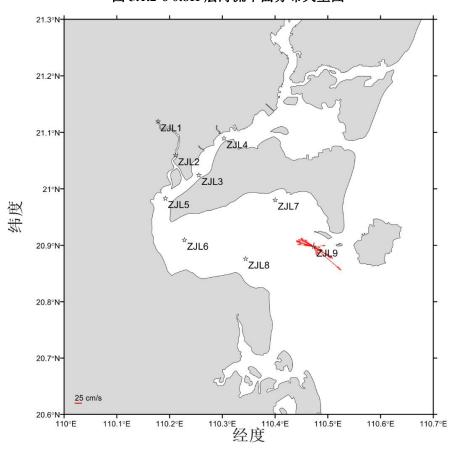


图 5.1.2-7 底层海流平面分布矢量图

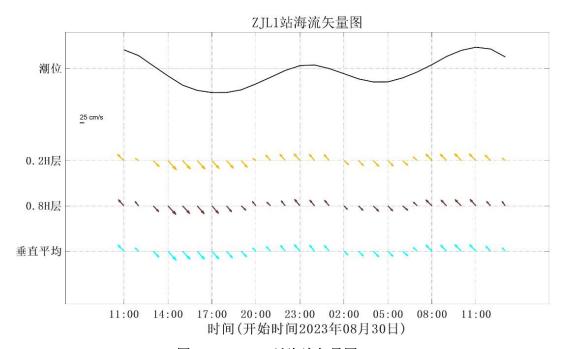


图 5.1.2-8 ZJL1 站海流矢量图

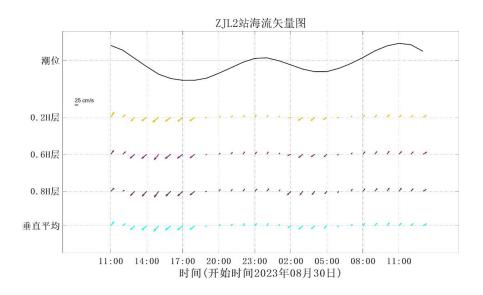


图 5.1.2-9 ZJL2 站海流矢量图

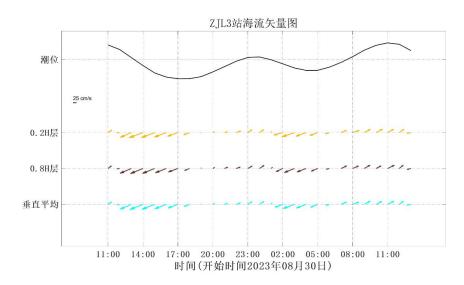


图 5.1.2-10 ZJL3 站海流矢量图

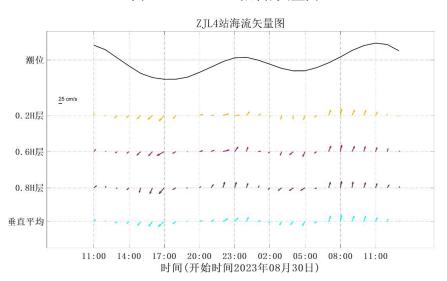


图 5.1.2-11 ZJL4 站海流矢量图

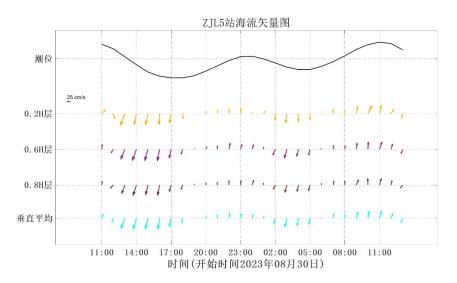


图 5.1.2-12 ZJL5 站海流矢量图

174

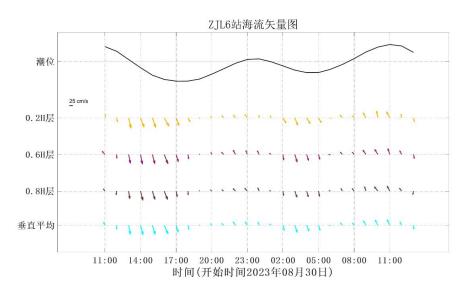


图 5.1.2-13 ZJL6 站海流矢量图

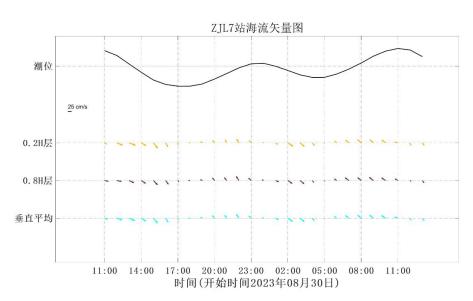


图 5.1.2-14 ZJL7 站海流矢量图

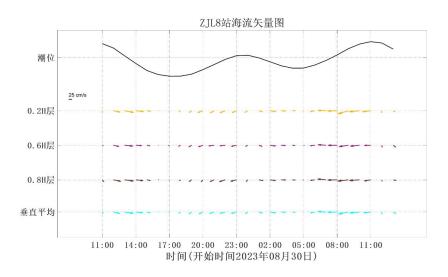


图 5.1.2-15 ZJL8 站海流矢量图

175

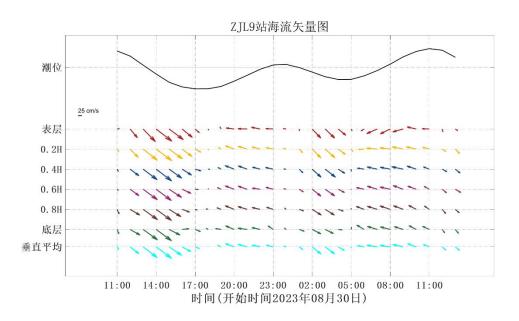


图 5.1.2-16 ZJL9 站海流矢量图

5.1.2.2 潮流分析

余流通常指实测海流资料中除去周期性流动(天文潮)之后,剩余的部分流动。其中包括潮汐余流、风海流和密度流等非周期性流动。大潮期水文观测各站各层余流对比见表 5.1.2-1, 大潮期余流的分布图见图 5.1.2-17。

由图表可知,调查海区观测期间余流流速主要介于 1.1cm/s~26.8cm/s。最大 余流为潮流 ZJL9 站(表层,26.8cm/s,177°),最小余流为潮流 ZJL1 站(0.8H 层,1.1cm/s,101°)。各站表层的余流流速最大,方向主要为西南方向。ZJL4 站的余流方向主要为西北方向。

图 5.1.2-17 观测期各站余流图

表 5.1.2-1 观测期各站各层余流对比表

站位及层次	观测期间余流			
	流速(cm/s)	流向 (°)		
ZJL1-0.2H	2.8	146		
ZJL1-0.8H	1.1	101		
ZJL2-0.2H	7.0	250		
ZJL2-0.6H	6.3	251		
ZJL2-0.8H	6.4	226		
ZJL3-0.2H	17.5	256		
ZJL3-0.8H	13.8	255		
ZJL4-0.2H	1.5	79		
ZJL4-0.6H	3.8	350		
ZJL4-0.8H	7.3	335		
ZJL5-0.2H	14.8	178		
ZJL5-0.6H	11.7	207		

	观测期间余流			
站位及层次	流速(cm/s)	流向 (°)		
ZJL5-0.8H	10.0	210		
ZJL6-0.2H	12.8	164		
ZJL6-0.6H	11.9	189		
ZJL6-0.8H	11.2	192		
ZJL7-0.2H	2.7	122		
ZJL7-0.8H	1.3	46		
ZJL8-0.2H	13.4	225		
ZJL8-0.6H	11.3	243		
ZJL8-0.8H	11.0	226		
ZJL9-表	26.8	177		
ZJL9-0.2H	18.9	175		
ZJL9-0.4H	14.2	174		
ZJL9-0.6H	9.6	177		
ZJL9-0.8H	6.6	181		
ZJL9-底	4.1	180		

5.1.2.3 悬浮泥沙

悬浮泥沙浓度是一种随机性很强的变量,在时间与空间上变化很大。其变化与分布特征主要受泥沙来源、潮流、波浪、底质等诸多因素控制。通常近海泥沙来源主要有:河流入海泥沙、海岸海滩和岛屿侵蚀泥沙以及海洋生物残骸形成的泥沙。

本次水文观测期间,各站悬沙浓度过程曲线如图 5.1.2-18 至图 5.1.2-26 所示, 各站悬沙浓度范围如表 5.1.2-2 所示。

由图表结果可知

- (1)调查海区悬沙浓度范围为 0.001kg/m³~0.058kg/m³, ZJL5 站底层的悬沙浓度最大 (0.058kg/m³), ZJL4 站表层的悬沙浓度最小 (0.001kg/m³);
 - (2) 在垂向上,各站表层和底层悬沙浓度较为接近。
 - (3) 空间上, 近岸站点的平均悬沙浓度高于外海站点的平均悬沙浓度。

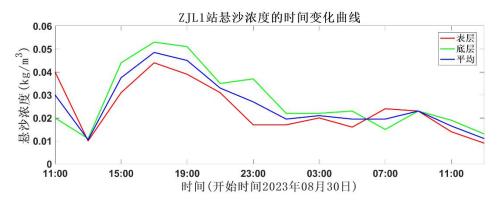


图 5.1.2-18 ZJL1 站悬沙浓度时间过程曲线图

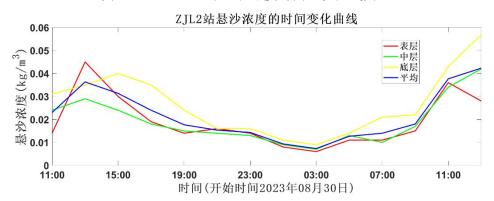


图 5.1.2-19 ZJL2 站悬沙浓度时间过程曲线图

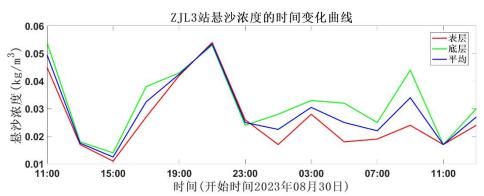


图 5.1.2-20 ZJL3 站悬沙浓度时间过程曲线图

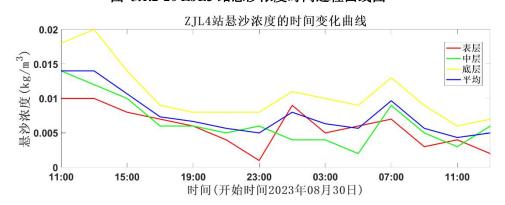


图 5.1.2-21 ZJL4 站悬沙浓度时间过程曲线图

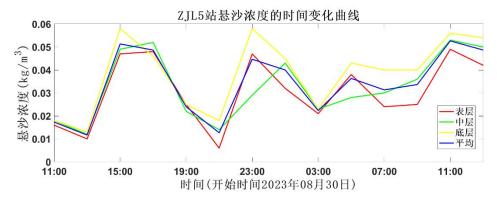


图 5.1.2-22 ZJL5 站悬沙浓度时间过程曲线图

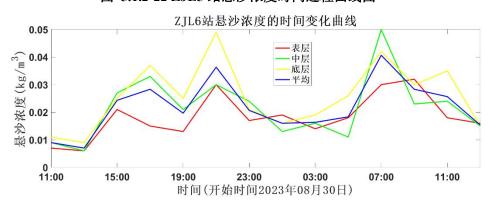


图 5.1.2-23 ZJL6 站悬沙浓度时间过程曲线图

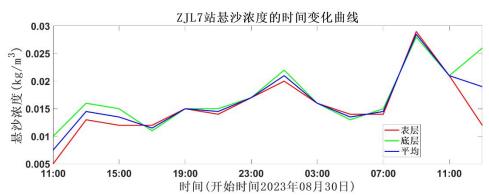


图 5.1.2-24 ZJL7 站悬沙浓度时间过程曲线图

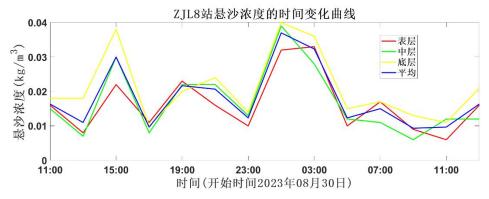


图 5.1.2-25 ZJL8 站悬沙浓度时间过程曲线图

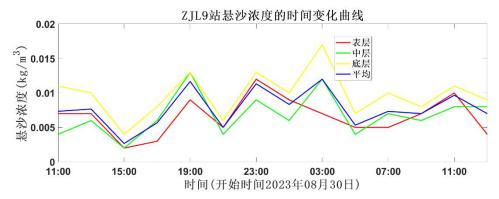


图 5.1.2-26 ZJL9 站悬沙浓度时间过程曲线图

表 5.1.2-2 各站悬沙浓度情况表

J	 项目		悬沙浓度	芰(kg/m³)	
站位	层次	最大	最小	平均	全站平均
711 1	表层	0.044	0.009	0.024	0.026
ZJL1	底层	0.053	0.011	0.028	0.026
	表层	0.045	0.006	0.019	
ZJL2	中层	0.042	0.007	0.019	0.022
	底层	0.057	0.009	0.027	
ZJL3	表层	0.054	0.011	0.026	0.029
ZJL3	底层	0.054	0.014	0.032	0.029
	表层	0.010	0.001	0.006	
ZJL4	中层	0.014	0.002	0.007	0.008
	底层	0.020	0.006	0.011	
	表层	0.049	0.006	0.031	
ZJL5	中层	0.053	0.012	0.033	0.034
	底层	0.058	0.013	0.038	
	表层	0.032	0.006	0.018	
ZJL6	中层	0.050	0.006	0.022	0.022
	底层	0.049	0.009	0.026	
ZJL7	表层	0.029	0.005	0.015	0.016
ZJL /	底层	0.028	0.010	0.017	0.010
	表层	0.033	0.006	0.016	
ZJL8	中层	0.039	0.006	0.017	0.018
	底层	0.040	0.010	0.021	
	表层	0.012	0.002	0.007	
ZJL9	中层	0.013	0.002	0.007	0.008
	底层	0.017	0.004	0.010	

5.2 地形地貌与冲淤环境现状调查与评价

5.2.1 地形地貌

本工程区位于湛江市经济开发区东海岛民安街道范围内,场地地貌为第四系海陆平原与丘陵台地交互带,地势大致是北部及北东方向地势高,滨海地势较低,北部为丘陵台地。多年来,拟种植红树林区域均为人工围塘,未进行大范围改造,除有人工修筑土堤及围塘外,基本无大型人工建筑及改造痕迹。

本章节引用《湛江经开区红树林湿地生态修复系统治理项目初步勘察设计设计报告》。中交广州水运工程设计研究院有限公司在 2024 年 4 月-5 月在项目场地内完成勘探点 15 个,完成率 100%,其中取样钻孔 8 个,占比 53.3%,所有钻孔均需进行标准贯入试验。

根据外业钻探、原位测试及室内土工试验结果,在本次勘探深度范围内,场地地基土分区叙述如下:

第四系全新统海相沉积层(Q4m)

①层淤泥:深灰色、灰黑色,流塑,成分以黏粒为主,含少量有机质、贝壳碎片及砂粒,略具腥臭味。个别地段底部含粉细砂。场区所有钻孔均有揭露。层厚 1.10~8.30m,平均值 5.67m; 层顶埋深 0.00m,层顶高程-0.65~1.85m,详见表 5.2.1-4。

该层进行标准贯入试验 43 次,实测击数 1~3 击,平均值 1.5 击; 经杆长修正击数 0.9~2.7 击,平均值 1.4 击,详见表 5.2.1-3。

根据相关规范及参照地区经验,建议该层地基承载力特征值 fak=50kPa。

②层粉质黏土:灰黄色、灰白色、灰色,可塑状为主,局部软塑状,土质较均匀,无摇震反应,切面稍光泽,干强度及韧性中等,不均匀含粉砂。场区所有钻孔均有揭露。揭露层厚 0.50~7.35m,平均值 1.80m;层顶埋深 1.10~8.30m,层顶高程-7.18~0.17m,详见表 5.2.1-4。

该层进行标准贯入试验 6 次,实测击数 $5\sim14$ 击,平均值 9.2 击;经杆长修正击数 $4.9\sim13.4$ 击,平均值 8.2 击,详见表 5.2..1-3。

根据相关规范及参照地区经验,建议该层地基承载力特征值 fak=120kPa。

③层粉细砂:灰白色、灰黄色,饱和,稍密状为主,砂为石英质,不均匀含

较多黏粉粒,分选性较差,级配一般。场区仅 ZK2 号钻孔有揭露。层厚 4.30m,层顶埋深 2.40m,层顶高程-1.47m,详见表 5.2.1-4。

该层进行标准贯入试验 3 次,实测击数 13~14 击,平均值 13.3 击;经 杆长修正击数 11.3~13.1 击,平均值 12.0 击,详见表 5.2.1-3。

根据相关规范及参照地区经验,建议该层地基承载力特征值 fak=140kPa。

④层淤泥质土: 深灰色、灰黑色,流塑,成分以黏粒为主,含少量有机质,略具腥臭味。场区仅 ZK1 号钻孔有揭露。揭露层厚 1.75m,层顶埋深 6.70m,层顶高程-5.77m,详见表 5.2.1-4。

表 5.2.1-1 勘探点位一览表

附表1: 勘探点一览表

工程名称: 湛江经开区红树林湿地生态修复系统治理项目

	420,000	110 (117)	h Liter	坐	标			取样个影	ţ	原位	測试		100,000	
序号	勘探 点编 号	勘探 点类 型	钻探 深度 (m)	X (m)	Y (m)	孔口 高程 (m)	原状样	扰动样	水样	标 贯 (次)	十字板(次)	勘探 开始 日期	勘探 终止 日期	备注
1	ZK1	标准贯入孔	5, 95	2331215, 304	426946, 518	-0.65				4	5	2024. 4. 28	2024, 4, 28	
2	ZK2	控制取土孔	8, 45	2329416.973	427889, 982	0.93	2	2		5		2024. 5. 3	2024. 5. 3	
3	ZK3	标准贯入孔	8, 90	2328719. 195	426610.701	1. 22		200		5		2024. 4. 30	2024. 4. 30	
4	ZK4	控制取土孔	8, 60	2329229.713	425702, 800	0.66	4		1	4		2024. 5. 3	2024. 5. 3	
5	ZK5	控制取土孔	8, 50	2327910.874	425718, 546	0.52	3			3	7	2024. 5. 1	2024. 5. 1	
6	ZK6	标准贯入孔	5, 95	2326649.972	425238, 993	0.96				4	2	2024. 5. 10	2024, 5, 10	
7	ZK7	控制取土孔	8, 45	2325692, 505	425856, 517	0.10	2			4		2024. 5. 9	2024. 5. 9	
8	ZK8	标准贯入孔	7.30	2325734. 618	424291.052	0.64				4		2024, 5, 4	2024. 5. 4	0.
9	ZK9	控制取土孔	8, 50	2325432. 944	423143. 283	0.61	4			4		2024. 5. 1	2024. 5. 1	
10	ZK10	标准贯入孔	8, 40	2323904. 190	421209, 857	0.78				5	7	2024. 5. 2	2024. 5. 2	
11	ZK11	控制取土孔	8.10	2322943. 474	422397.826	1. 27	4			4	6	2024. 5. 7	2024. 5. 7	
12	ZK12	标准贯入孔	7.20	2322786. 501	421034. 459	1.59				4	6	2024. 5. 7	2024. 5. 7	
13	ZK13	控制取土孔	8.30	2321305. 764	421367.560	1.79	4			4		2024. 5. 5	2024. 5. 5	
14	ZK14	标准贯入孔	7.10	2321796. 356	419312.550	1.85				4		2024, 5, 6	2024. 5. 6	
15	ZK15	控制取土孔	8.40	2321491. 422	418163.990	1.49	4		1	4		2024. 5. 5	2024. 5. 5	
			118.10				27	2	2	62	33			

制表:

枚數 赵金桐

审核:

表 5.2.1-2 各土层物理力学指标统计表

附表2: 各土层物理力学指标统计表

	湛江经开区包	1	-			质指表	É.			親形	护板			Wist	指标	_				(5.10	快展	(7) 10	快剪	12	超開結署	(24水道)	CU	无恒	1233					+	¥i.	fl.	12			天朝	坡度角			$\overline{}$
		-	1	75,777		70.70	Ť		+	1	100	液	K	- Bi	Jan Hr.		0.89	压缩	阿佛	10.19	19	144	A	_	泉力	-	成为	ME		\vdash	10.61	1成角砾		(8)			7 4	- 35	(8)	7500	130000	1	16	30
居名称及编 号	统计项目	介水平		提密度	干密度	饱和度		孔殿本	祖用	50 R2	性類	推推	指表数	板板	系	iti W	開報	指数		100	推	粘浆	# 16	粘浆	内 度 指角	粘聚力	内摩	服状	里型	极	(8)	4 1	取书	大	15	- <0.0	1	対対	長	100	* F		通	机
		W (%)	G_{i}	ρ, g/cm²	Pd	S.		N.	111		I_{μ}	1000	1000	E_{H2}	100-2	C _{II} 200kpa cm ² /s	Pc tPu	Ce	Cz	c kPa	Я Ф (*)	c kPa	я Ф (°)	Cov kPa	Фсн	C'cu	Φ'cu	qu kPa	qu.	st	10	10. 5 5 3 (%) (5	0.5	0.2	0.0	5	1	n C			1	k, cm/s	k _B emis	Jil g-kg
	个数	20	20	20	20	20	20	20	20	20	20	20	20	20	4	4	8	8	8	8	8	11	11	7	7	7.	7	2	2	2				Т	Т		Т				T	4	4	7
1	最大值	93.3	2.67	1.72	1.18	99.7	2.752	73.3	59.7	36.6	23.7	2.60	2.41	2.60	1.60	3.59	16.8	0.670	0.130	6.4	2.9	12.0	18.1	12.7	16.4	15.3	19.6	13.6	1.7	9.3											T	5.35E-08	5.14E-08	62.6
1	最小值	44.7	2.64	1.36	0.70	88.3	1.257	55.7	39.0	23.6	14.8	1.37	0.88	1.25	0.27	0.38	7.1	0.321	0.031	4.0	1.0	6.8	7.0	7.9	10.8	9.9	12.1	10.2	1.1	8.0		\neg						\top			T	1.99E-08	2.90E-88	19.8
数級の	平均值	70.1	2.65	1.54	0.92	95.9	1.938	65.4	52.6	31.8	20.8	1.82	131	1.69	0.70	1.43	12.5	0.497	0.074	4.9	2.1	8.8	11.4	10.5	13.1	12.0	15.0	11.9	1.4	8.6	\neg		\top				\top	\top	\top			4.25E-08	3.58E-08	50.5
	标准差	13.54	0.01	0.09	0.13	3.24	0.38	4.58	6.14	3.72	2.56	0.32	0.43	0.34			3.67	0.12	0.03	0.92	0.62	1,81	3.01	1.60	2.24	1.95	2.66				\neg	\neg	\top	\top	\top	\top	$^{+}$	\top	\top	\top			$\overline{}$	15.7
1	变异系数	0.193	0.004	0.055	0.136	0.034	0.194	0.070	0.117	0.117	0.123	0.177	0.237	0.201			0.293	0.246	0.452	0.187	0.301	0.206	0.264	0.153	0.170	0.162	0.177			П		\neg	\top	†			0.31							
ı	标准值	75.4	2.65	1.51	0.87	97.2	2.086	67.2	55.0	33.2	21.8	1.94	1.98	1.56			10.1	0.580	0.097	4.3	1.6	7.8	9.7	9.3	11.5	10.6	13.0																	62.2
	个数	6	6	6	6	6	6	6	6	6	6	6	6	6						1	1	2	2								\neg	\neg	\top	\top			\top	\top				5	3	
ı	最大值	44.3	2,74	1.81	1.34	96.9	1.297	36.5	51.3	32.4	19.6	0.70	0.79	4.16		\vdash				27.2	13.0	34.5	16.8							П	\neg	\top	\top	\top	\top	\top	$^{+}$	\top	$^{+}$		T	1.10E-06	1.21E-06	
1	最小值	34.8	2.74	1.72	1.19	91.6	1.041	51.0	45.7	29.5	16.2	0.33	0.49	2.79						27.2	13.0	32.5	16.7								\neg	\neg	\top	\top	\top	_	\top	\top	\top	\top	\top	6.10E-07	6.25E-07	
9度報主②	平均值	40.8	2.74	1.77	1.26	94.5	1.184	54.1	49.3	31.0	18.3	0.53	0.72	3.10								33.5	16.8			2				П		\neg	\top	\top		\top	\top	\top		\top	1	8.62E-07	8.62E-07	
	标准差	3.79	0.00	0.04	0.06	1.98	0.10	2.14	2.11	0.93	1.34	0.14	0.11	0.52											\vdash					П		\top				\top				\top	T	0.00	0.00	\top
1	变异系数	0.093	0.000	0.021	0.847	0.021	0.085	0.040	0.043	0.030	0.073	0.263	0.159	0.169																						\top		\top				0.243	0.358	\top
1	标准值	44.0	2.74	1.74	1.21	96.1	1.267	55.9	51.0	31.7	19.4	0.64	0.81	2.67																	\neg		\top	\top		\top	$^{+}$	\top		\top		1.06E-06	1.32E-06	
	个数																								$\overline{}$					П		1 2	2	2	2	2	2	2	2	2	2	2		\top
1	最大恒																1			1 1							7 3					6.5	0 28.7	0 16.5	0 29.8	0 48.3	0 0.2	4 52.7	0.58	35	28	5.10E-04		
1	最小值							-																							\neg	4.1	0 7.5	0 13.4	0 2.5	42.5	0 0.1	0 5.4	0.04	34	28	4.92E-04		\top
10 mm	平均值	$\overline{}$					\vdash	-			$\overline{}$	T		-																П	\neg	5.3	0 18.1	0 14.9	5 16.1	5 45.5	0 0.1	7 29.0	8 0.31	35	28	5.01E-04		-
İ	标准差							-			\vdash	T		\vdash																		\top	\top		+	\top	\top	\top	\top		+			+
1	变异系数																															\neg	$^{-}$				$^{+}$	$^{-}$	T	\top				\top
ı	标准值	-				-		-			\vdash			\vdash										$\overline{}$	\vdash					П	\neg	\neg	\top		+	+	$^{+}$	+	+	+	†		-	+
	个数	1	1	1	1	1	1	1	1	1	1	1	1	1		\vdash				1	1				$\overline{}$					Н	\neg	\neg	+	+	+	+	+	+	+	+	†		$\overline{}$	+
ı	最大值	37.5	2.68	1.80	1.31	-	-	-	-	21.9	14.1	1.11	0.71	2.88						9.4	6.6										1	$^{-}$	\top		T			\top						
1	最小值	-	-	_	_	_	-	_	-	21.9	-	_	-	-						9.4	6.6											$^{+}$	\top				+	\top	+	\top	T		$\overline{}$	\top
(N) (第五/8)	平均值									21.9							- 6			9.4	6.6											_	\top				\top	\top		_			1	+
	标准差																													\Box		+	+	+	+	+	+	+	+	+	+		$\overline{}$	+
ı	9350							-			$\overline{}$	+																			_	+	+	+	+	+	+	+	+	+	+		+	+
t	标准值				_		_	-	_		_	+	_	_					_								_				-	+	+	+	+	+	+	+	+	+	+	_	_	+

9811: **3**

赵金桐

中族: 大大的证明

表 5.2.1-3 各土层物理力学指标统计表

工程名称: 湛江经开区红树林湿地生态修复系统治理项目

序号	岩土编号	岩土名称	实测击数场区地层统计	修正击数场区地层统计	备注
1	0	淤泥	统计个数: 43 最大值: 3.0 最小值: 1.0 平均值: 1.5 标准差: 0.551 变异系数: 0.370 修正系数: 0.903 标准值: 1.3	统计个数: 43 最大值: 2.7 最小值: 0.9 平均值: 1.4 标准差: 0.468 变异系数: 0.343 修正系数: 0.910 标准值: 1.2	标贯试验
2	2	粉质黏土	统计个数: 15 最大值: 13.0 最小值: 7.0 平均值: 9.3 标准差: 2.017 变异系数: 0.218 修正系数: 0.900 标准值: 8.3	统计个数: 15 最大值: 11.4 最小值: 6.0 平均值: 8.2 标准差: 1.650 变异系数: 0.201 修正系数: 0.908 标准值: 7.5	标贯试验
3	3	粉细砂	统计个数: 3 最大值: 14.0 最小值: 13.0 平均值: 13.3	统计个数: 3 最大值: 13.1 最小值: 11.3 平均值: 12.0	标贯试验
4	4	淤泥质土	统计个数: 1 最大值: 4.0 最小值: 4.0 平均值: 4.0	统计个数: 1 最大值: 3.3 最小值: 3.3 平均值: 3.3	标贯试验

编制

3. H

校核: 赵金桐

审核:

表 5.2.1-4 地层统计表

工程名称: 湛江经开区红树林湿地生态修复系统治理项目

地层编号	时代成因	岩土名称	项次	层 厚 (m)	层顶 高程 (m)	层底 高程 (m)	层顶 深度 (m)	层底 深度 (m)	备 注
	750	117	统计个数	15	15	15	15	15	
0	- 1	and here	最大值	8. 30	1.85	-0.17	0.00	8. 30	1
1	Q _t ⁿ	淤泥	最小值	1. 10	-0.65	-7.18	0.00	1.10	1
			平均值	5. 67	0.92	-4. 76	0.00	5. 67	
			统计个数	15	15	15	15	15	
0	Q _t ^m	松 阿 利	最大值	7. 35	-0. 17	-1. 47	8. 30	8, 90	
2		粉质黏土	最小值	0.50	-7. 18	-8.35	1.10	2.40	
			平均值	1.80	-4. 76	-6. 55	5. 67	7. 47	
			统计个数	1	1	1	1	1	
@	0.8	45A Seri Tils	最大值	4. 30	-1.47	-5.77	2.40	6.70	
3	Q _t ^m	粉细砂	最小值	4. 30	-1.47	-5. 77	2. 40	6.70	
			平均值	4. 30	-1. 47	-5. 77	2. 40	6.70	
			统计个数	1	1	1	1	1	
0	0.8	ANA ART COS. 100	最大值	1.75	-5. 77	-7.52	6.70	8. 45	
4	Q _t ^m	淤泥质土	最小值	1.75	-5, 77	-7.52	6.70	8. 45	
			平均值	1.75	-5. 77	-7. 52	6.70	8, 45]

编制

3

校核: 赵金桐

审核: 宋神道

5.2.2 海底冲淤情况

红树林生态修复工程全部位于行之有年的围塘范围内,围塘主要通过闸口与周边海域进行水力交换。

施工期,项目首先会开闸放水,降低围塘的水位,然后再开入水陆两用挖掘机施工。因此,施工期的水位较低,且施工期关闭闸门,与周边海域没有水力交换,施工过程的水动力条件极差。可见,项目施工过程对海底冲淤环境影响是较小的。

运营期,项目区围塘处于半封闭状态,依靠闸门与外海连通,闸门关闭后塘内水位基本处于稳定状态,受降雨或渗漏影响有小幅度变化。大潮期(4-6天)闸门打开,涨潮期间潮水从闸门进入塘内,塘内可以恢复部分潮汐特征,塘内潮高相比外海低 0.1-0.4m。

围塘是通过闸门的开闭,引入海水,因此引入的水流通过闸口处慢慢溢满至整个围塘,流速较慢,因此,外环境海水与本项目围塘的海水交换,对冲淤环境基本均集中在闸口附近,对整个围塘的冲淤环境的影响较小。

5.3 海洋环境质量现状调查概况

根据《海洋工程环境影响评价技术导则》(GB/T19485-2014),本项目水动力环境、水质环境、生态环境评价等级为1级评价,沉积物环境评价等级为2级评价;需收集最近3年内建设项目周边海域春、秋两季海洋调查资料。

根据《海洋工程环境影响评价技术导则》(GB19485-2014)关于水质、沉积物、生态调查站位的要求: 1级评价项目一般不应少于 5-8 个断面,每条断面应布置 4-6 个调查站位。根据本报告"2.5.1海洋环境影响评价等级",本项目水质为 1级评价,沉积物为 2级,生态环境为 1级;因此水质调查需设至少 4个断面,每个断面至少 5 个站位,至少应布设 20 个调查站位;沉积物调查宜取水质调查的 50%左右,也即 10 个站位左右;生态调查站位一般不少于水质站位的 60%,也即一般不少于 12 个站位。

项目春季资料采用 2024 年 4 月中科检测技术服务(湛江)有限公司在本项目附近海域开展的海洋环境现状调查资料在麻章东南部海域设 20 个水质调查站位、12 个生态、沉积物调查站位,3 条潮间带调查断面,2 条拖网断面。

秋季资料采用 2023 年 11 月中科检测技术服务(湛江)有限公司在本项目附近海域开展了海洋环境现状调查,调查在项目海域附近共设置水质现状监测站位 20 个,沉积物站位 12 个、生态站位 12 个、生物体质量调查站位 4 个、渔业资源调查站位 12 个、潮间带站位 3 个。

由上可以看出,项目海洋环境调查资料满足导则要求。

5.3.1 春季海洋现状调查

5.3.1.1 海洋现状调查概况

(1) 调查站位

春季调查共在东海岛西部海域设 20 个水质调查站位、12 个生态、沉积物调查站位,3 条潮间带调查断面,2 条拖网断面。

调查站位布置图详见图5.3.1-1,调查站位及内容位置详见表5.3.1-1和表5.3.1-2。

表5.3.1-1项目调查站位及内容

站位编号	经度	纬度	调查内容
WS3	110.2713606	21.07809319	
WS4	110.2510214	21.06721086	
WS5	110.2722001	21.04627489	
WS6	110.2824461	21.04123821	水质
WS7	110.2939796	21.02999266	小 灰
WS10	110.2474809	20.99624093	
WS11	110.2249932	20.98739111	
WS13	110.245539	20.9668096	
WS16	110.1757908	20.97378229	
ZS1	110.2935934	21.10059618	
ZS2	110.2602509	21.08377557	
ZS3	110.2868986	21.07080502	
ZS4	110.3060925	21.05615752	
ZS5	110.2543688	21.0232229	 水质、生态、沉积物
ZS6	110.2728224	21.01499061	
ZS8	110.2309477	21.02201112	
ZS9	110.2368593	21.00255118	
ZS10	110.1915193	21.01538621	
ZS11	110.207634	20.99626097	
ZS12	110.1915836	20.94542869	

表 5.3.1-2 潮间带及拖网起始点位明细表

路线	经度	纬度
	潮间带	
C1	110.268445	21.07599087
C2	110.1944871	21.02306642
C3	110.30024260	21.06847018
	拖网	
T1	110.28541803	21.07130527
T1	110.27376652	21.07394457
T2	110.20102501	21.03366852
T2	110.20282745	21.01186752

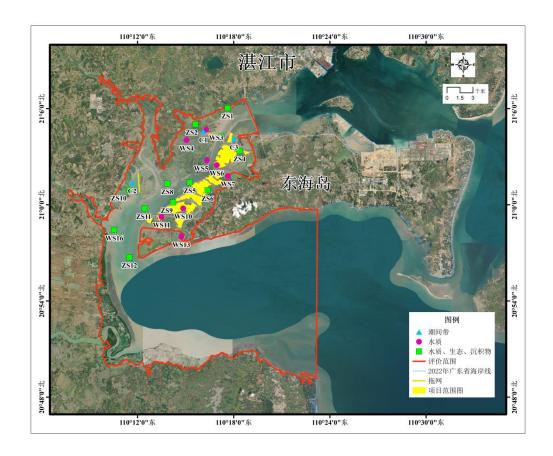


图 5.3.1-1 春季采样点位分布图

5.3.1.2 调查内容与评价方法

1、海水环境现状调查

(1)调查内容

水质调查项目为:水温、透明度、pH值、盐度、悬浮物、化学需氧量、溶解氧、无机氮(氨氮、亚硝酸盐、硝酸盐)、活性磷酸盐、硫化物、挥发性酚、粪大肠杆菌、石油类、重金属(汞、砷、锌、铜、铅、镉、铬)。

(2) 调查方法

现场监测采样按《海洋监测规范》(GB17378.5-2007)进行,使用 GPS 导航船只进入预定点位,测量水深和进行透明度观测;采集水样根据水深确定层次:水深<10m 时采表层水样,10m〈水深<25m 时采表层和底层水样,水深>25m 时采表层、中层和底层水样。海水盐度、水深、水温、pH 均为现场测定。其它水环境因子均用容积为 5L 的有机玻璃采水器采样,按《海洋监测规范》(GB17378.5-2007)规定的方法进行样品采集、保存和实验室分析测试。各项目的分析方法及检出限见下表。

表 5.3.1-3 水质分析方法

检测项目	检测方法/依据	分析仪器	检出限
水温	《海洋监测规范第4部分:海水分析》	JK-202-04	/
小 值	GB17378.4-2007 表层水温表法 25.1	表层水温计	/
aII 店	《海洋监测规范第4部分:海水分析》	PHB-4	/
pH 值	GB17378.4-2007pH 计法 26	pH 计	/
盐度	《海洋监测规范第4部分:海水分析》	HWYAD-1	2
血及	GB17378.4-2007 盐度计法 29.1	台式盐度仪	2
悬浮物	《海洋监测规范第4部分海水分析》	ESJ203-S	O O /I
窓仔物	GB17378.4-2007 重量法 27	电子天平	0.8mg/L
添 明 	《海洋监测规范第4部分:海水分析》	透明圆盘	/
透明度	GB17378.4-2007 透明圆盘法 22	迈	/
凉妞怎	《海洋监测规范第4部分:海水分析》		0.16 /
溶解氧	GB17378.4-2007 碘量法 31	碱式滴定管	0.16mg/L
化学需氧	《海洋监测规范第4部分:海水分析》		0.22 /I
量	GB17378.4-2007 碱性高锰酸钾法 32	碱式滴定管	0.32mg/L
江:7岁 至台 土卜	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	0.002 /I
亚硝酸盐	GB17378.4-2007 萘乙二胺分光光度法 37	见分光光度计	0.003mg/L
アル 亜会 土人	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	0.002 /I
硝酸盐	GB17378.4-2007 镉柱还原法 38.1	见分光光度计	0.003mg/L
复	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	0.002 /I
氨	GB17378.4-2007 次溴酸盐氧化法 36.2	见分光光度计	0.003mg/L
丁.411 7米	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	0.002 /I
无机磷	GB17378.4-2007 磷钼蓝分光光度法 39.1	见分光光度计	0.003mg/L
T去 / L A/m	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	0.2/I
硫化物	GB17378.4-2007 亚甲基蓝分光光度法 18.1	见分光光度计	$0.2\mu g/L$
7.油米	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	2 5/1
石油类	GB17378.4-2007 紫外分光光度法 13.2	见分光光度计	$3.5 \mu g/L$
工	《海洋监测规范第4部分:海水分析》	AFS-8220	0.007 /7
汞	GB17378.4-2007 原子荧光法 5.1	原子荧光光度计	$0.007 \mu g/L$
铜	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	0.2μg/L

检测项目	检测方法/依据	分析仪器	检出限
	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	
	(连续测定铜、铅和镉)6.1	计	
	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	
铅	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	$0.03 \mu g/L$
	7.1	计	
	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	
镉	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	$0.01 \mu g/L$
	8.1	计	
锌	《海洋监测规范第4部分:海水分析》	ice-3300 火焰原子	2 1~/I
拝	GB17378.4-2007 火焰原子吸收分光光度法 9.1	吸收分光光度计	3.1µg/L
	《海洋监测规范第4部分:海水分析》	ice-3300 火焰原子	
铬	GB17378.4-2007 无火焰原子吸收分光光度法	吸收分光光度计	$0.4 \mu g/L$
	10.1	7久収刀几万万	
砷	《海洋监测规范第4部分:海水分析》	AFS-8220	0.5ug/1
ም ተ	GB17378.4-2007 原子荧光法 11.1	原子荧光光度计	0.5ug/l
叶绿素 a	《海洋监测规范第7部分: 近海污染生态调查	UV-8000 紫外可	0.200/I
川冰系a	和生物监测》GB17378.7-2007 分光光度法 8.2	见分光光度计	$0.2\mu g/L$

(3) 评价方法和标准

根据监测结果,利用《环境影响评价导则》(HJ/T2.3-93)所推荐的单项水质参数法进行评价。

单项水质参数i在j中占的标准指数。

$$S_{i,j}=C_{i,j}/C_{si}$$

式中: $S_{i,i}$: 评价因子 i 的水质指数;

 $C_{i,j}$: 评价因子 i 在 j 点的实测统计代表值,mg/L。

 C_{si} : 评价因子 i 的水质评价标准限值,mg/L。

DO 的标准指数为:

$$S_{DO,j} = \frac{\left|DO_{f} - DO_{j}\right|}{DO_{f} - DO_{s}}$$

$$DO_{j} > DO_{f}$$

$$S_{DO,j} = DO_{s}/DO_{j}$$

$$DO_{j} \leq DO_{f}$$

 $DO_f = (491-2.65S)/(33.5+T)$

式中: DOs-溶解氧的地表水质标准限值, mg/L;

 DO_i 一溶解氧在j点的实测统计代表值,mg/L;

DO_f一饱和溶解氧浓度, mg/L;

pH 的标准指数为:

$$S_{pH,j} = \frac{7.0 - pH_j}{7.0 - pH_{sd}}$$
 $pH_j \le 7.0$

$$S_{pH,j} = \frac{pH_j - 7.0}{pH_{su} - 7.0}$$
 $pH_j > 7.0$

其中:

式中: $S_{pH,j}$ —pH 的指数;

pH;—pH 值实测统计代表值;

pHsu—pH 评价标准的上限值;

pHsd—pH评价标准的下限值;

水质参数的标准指数>1,表明该水质参数超过了规定的水质标准。

2、沉积物现状调查

(1) 调查项目

含水率、石油类、有机碳、硫化物、铅、铜、镉、汞、砷、铬、锌、粒度等。 (2) 采样方法

根据《海洋监测规范》(GB17378.3-2007)中的要求,进行沉积物样品的采集、保存与运输。到达指定站位后,将绞车的钢丝绳与 0.05m² 抓斗式采泥器连接,同时测量站位水深,开动绞车将采泥器下放至离海底 3m~5m 时,全速开动绞车使其降至海底。然后将采泥器提至接样板上,打开采泥器上部耳盖,轻轻倾斜使上部积水缓慢流出后,用塑料袋或勺从采泥器耳盖中仔细取上部 0cm~1cm 的沉积物。如遇砂砾层,可在 0cm~3cm 层内混合取样。现场记录底质类型,并分装与处理、保存。

(3)调查方法

样品的分析按照《海洋监测规范》(GB17378.5-2007)进行,各项目的分析方法如表 5.3.1-4。

表 5.3.1-4 样品分析方法一览表

检测项目	方法依据	仪器名称/型号	检出限
含水率	《海洋监测规范第5部分:沉积物分析》	电子天平(万分之	/
百八年	GB17378.5-2007 重量法(19)	一)PX224ZH	/
石油类	《海洋监测规范第5部分: 沉积物分析》	紫外可见分光光度	3.0 (10-6)
口	GB17378.5-2007 紫外分光光度法(13.2)	计 SP-1920	3.0 (10°)
有机碳	《海洋监测规范第5部分:沉积物分析》	/	/

	(GB17378.5-2007)重铬酸钾氧化-还原容		
	量法(18.1)		
硫化物	《海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 亚甲基蓝分光光度法 (17.1)	紫外可见分光光度 计 SP-1920	0.3 (10-6)
铅	《海洋监测规范 第 5 部分: 沉积物分析》 (GB17378.5-2007) 火焰原子吸收分光光 度法 (7.2)	原子吸收分光光度 计 ICE3500	3.0 (10-6)
铜	《海洋监测规范 第 5 部分: 沉积物分析》 (GB17378.5-2007) 火焰原子吸收分光光 度法(6.2)	原子吸收分光光度 计 ICE3500	2.0 (10-6)
镉	《海洋监测规范 第5部分: 沉积物分析》 (GB17378.5-2007) 无火焰原子吸收分光 光度法(8.1)	原子吸收分光光度 计 ICE3500	0.04 (10-6)
汞	《海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 原子荧光法 (5.1)	原子荧光光度计 AFS-8520	0.002 (10-6)
砷	《海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 原子荧光法(11.1)	原子荧光光度计 AFS-8520	0.06 (10-6)
铬	海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 无火焰原子吸收分光 光度法(10.1)	/	2.0 (10-6)
锌	海洋监测规范第5部分: 沉积物分析》 (GB17378.5-2007) 火焰原子吸收分光光 度法(9.1)	/	6.0 (10-6)
粒度	《海洋调查规范第8部分:海洋地质地球物理调查》(GB/T12763.8-2007)(6.3)	激光粒度分析仪 LS-POP(9)	/

(4) 分析方法

结合项目的特点和项目所属海域实际情况,以及附近海域的功能区划情况, 采用标准指数法,对现状监测结果进行标准指数计算。

3、生物质量调查

(1)调查项目

在渔获物中选取代表性海洋生物,分析其体内铜、铅、锌、镉、铬、总汞、砷、石油烃指标。

(2) 采样方法

①贝类样品的采集

用清洁刮刀从其附着物上采集贝类样品,选取足够数量的完好贝类存于高密度塑料袋中,压出袋内空气,将袋口打结或热封,将此袋和样品标签一起放入聚乙烯袋中并封口,存于冷冻箱中。

②虾与中小型鱼样采集

按要求选取足够数量的完好生物样,放入干净的聚乙烯袋中,应防止袋子被刺破。挤出袋内空气,将袋口打结或热封,将此袋和样品标签一起放入另一聚乙烯袋中,封口,于低温冰箱中贮存。若保存时间不太长(热天不超过 48h),可用冰箱或冷冻箱贮放样品。

③大型鱼类采集

测量并记下鱼样的体长、体重和性别。用清洁的金属刀切下至少 100g 肌肉组织,厚度至少 5cm,样品处理时,切除玷污或内脏部分。存于清洁的聚乙烯袋中,挤出空气并封口,将此袋和样品标签一起放入另一聚乙烯袋中,封口,于低温冰箱中贮存。若保存时间不太长(热天不超过 48h),可用冰箱或冷冻箱贮放样品。

(3)调查方法

样品的预处理和分析方法遵照《海洋监测规范》(GB17378.6-2007)进行,各项目的分析方法如表 5.3.1-5。

检测项目	方法依据	仪器名称/型号	检出限
石油烃	《海洋监测规范第6部分:生物体分析》	,	0.2 (10-6)
41個年	(GB17378.6-2007) (13)	/	0.2 (10)
 	《海洋监测技术规程第3部分:生物体》	,	0.30 (10-6)
TH TH	(HY/T147.3-2013) (6)	/	0.30 (10)
铜	《海洋监测技术规程第3部分:生物体》	,	0.08 (10-6)
계반	(HY/T147.3-2013) (6)	/	0.08 (10*)
锌	《海洋监测技术规程第3部分:生物体》	/	1.66 (10-6)
*** 	(HY/T147.3-2013) (6)	/	1.00 (10*)
砷	《海洋监测技术规程第3部分:生物体》	/	0.10 (10-6)
1444	(HY/T147.3-2013) (6)	/	0.10 (10*)
镉	《海洋监测技术规程第3部分:生物体》	/	0.03 (10-6)
刊刊	(HY/T147.3-2013) (6)	/	0.03 (10*)
铅	《海洋监测技术规程第3部分:生物体》	/	0.03 (10-6)
711	(HY/T147.3-2013) (6)	/	0.05 (10°)
汞	《海洋监测规范第6部分:生物体分析》		0.002 (10-6)
JK	(GB17378.6-2007) (5.1)	/	0.002 (10°)

表 5.3.1-5 样品分析方法一览表

(4) 分析方法

采用标准指数法,对现状监测结果进行标准指数计算。

4、海洋生物调查

(1) 调查项目

叶绿素 a、初级生产力、浮游植物、浮游动物、底栖生物、潮间带生物。

(2) 采样方法

①叶绿素 a 和初级生产力: 与水质采样相同,根据水深,用采水器采集表、底两层或者表、中、底三层水样,采样后量取一定体积(250mL)水样,经 GF/F 玻璃纤维滤膜过滤(过滤时抽气负压小于 50kPa)后,将滤膜对折,用铝箔包好,存放于液氮罐中,带回实验室用萃取荧光法测定,分析其水体内叶绿素 a 含量的平面分布及季节变化,计算初级生产力。

②浮游植物:浮游植物定量分析样品用浅水III型浮游生物网自底至表层作垂直拖网进行采集。拖网时,落网速度为 0.5m/s,起网为 0.5m/s~0.8m/s。样品用缓冲甲醛溶液固定,加入量为样品体积的 5%。样品带回实验室经浓缩后镜检、观察、鉴定和计数。分析其种类组成、数量分布、主要优势种及其多样性分析。

③浮游动物: 浮游动物样品用浅水 I 型浮游生物网从底层至表层垂直拖曳采集。采得的样品在现场用中性甲醛溶液固定,加入量为样品的 5%。在室内挑去杂物后以湿重法称取浮游动物的生物量,然后在体视显微镜下对标本进行鉴定和计数。分析其种类组成、数量分布、主要优势种及其多样性分析,并提供其种类名录。

④底栖生物:定量样品采用 0.05m² 采泥器,在每站位连续采集平行样品 5次,经孔径为 0.50mm 的筛网筛洗干净后,剩余物用体积分数为 5%-7%的中性甲醛溶液暂时性保存。定性样品采用框宽 1 米的阿氏拖网采集,在调查船航向稳定后投网,拖网绳应为水深 3 倍以上,以大约 2kn 的拖速拖行 15min。样品在实验室内进行计数、称重及种类鉴定,分析其种类组成、数量分布、主要优势种及其多样性分析,并提供其种类名录。

⑤潮间带生物: 在项目附近以及相关敏感目标附近设立不同底质类型(泥滩、沙滩和岩滩)的潮间带生物调查断面,在各断面潮间带的高、中、低潮区(分别采集定性样品和定量样品。定性样品在各断面周围随机采取;定量样品则用大小为 25cm×25cm(或 50cm×50cm)的取样框随机抛投,样框内所获底栖生物样品用 5%左右的中性福尔马林溶液固定保存,带回实验室分析、鉴定、计数和称重。

(3) 调查方法

样品的分析采用《海洋调查规范》(GB/T12763-2007)进行,各项目的分

析方法如表 5.3.1-6。

表 5.3.1-6 样品分析方法一览表

检测项目	检测方法	单 位	检出 限
浮游生物生态	《海洋监测规范第7部分:近海污染生态调查和生物监测》	,	,
调查	GB17378.7-2007 (5)	/	/
大型底栖生物	《海洋监测规范第7部分:近海污染生态调查和生物监测》	,	,
调查	GB17378.7-2007 (6)	/	/
潮间带生物生	《海洋监测规范第7部分:近海污染生态调查和生物监测》	,	,
态调查	GB17378.7-2007 (7)	/	/

(4) 分析方法

各调查项目的采样和分析均按《海洋调查规范-海洋生物调查》(GB12763.6 -2007)和《海洋监测规范》(GB17378-2007)中规定的方法进行。

1) 初级生产力

采用叶绿素 a 法,按照 Cadee 和 Hegeman(1974)提出的简化公式估算:

$$P = C_a QLt/2$$

式中: P: 初级生产力 (mg·C/m²·d);

 C_a : 表层叶绿素 a 含量 (mg/m^3) ;

Q: 同化系数 (mg·C/(mgChl-a·h));

L: 真光层的深度(m);

t: 白昼时间(h), 11h。

2) 优势度

优势度(Y)应用以下公式计算:

$$Y = \frac{n_i}{N} f_i$$

式中: n_i 为第 i 种的个体数; f_i 是该种在各站中出现的频率; N 为所有站每个种出现的总个体数。

3) 多样性指数

Shannon-Wiener 指数计算公式为:

$$\mathbf{H}' = -\sum_{i=1}^{s} P_i \log_2 P_i$$

式中: H' —种类多样性指数,S—样品中的种类总数, P_i —第 i 种的个体数与总个体数的比值。

4)均匀度

Pielou 均匀度公式为:

$$J = H' / log_2 S$$

式中: J—均匀度,H' —种类多样性指数,S—样品中的种类总数。

5) 游泳生物评估资源密度和确定优势种的方法

评估资源密度的方法:资源数量的评估根据底拖网扫海面积法(密度指数法),来估算评价区的资源重量密度和生物个体密度,求算公式为

$$S = (y)/a(1-E)$$

其中: S-重量密度(kg/km²)或个体密度(ind/km²)

a-底拖网每小时的扫海面积(每小时的扫海面积为0.0084km²)

y-平均渔获率(kg/h)或平均生物个体密度(ind/h)

E-逃逸率(取 0.5)

确定优势种的方法:根据渔获物中个体大小悬殊的特点,选用 Pinkas 等提出的相对重要性指数 IRI,来分析渔获物在群体数量组成中其生态的地位,依此确定优势种。IRI 计算公式为:

$$IRI = (N + W) F$$
.

式中: N-某一种类的尾数占渔获总尾数的百分比

W-某一种类的重量占渔获总重量的百分比

F-某一种类的出现的断面数占调查总断面数的百分比

- 5、渔业资源调查
- (1)调查项目

包括鱼卵和仔稚鱼、游泳动物(鱼、虾、蟹、头足类)调查。

- (2) 调查方法
- ①鱼卵与仔稚鱼:调查选择适于在调查海区作业且设备条件良好的渔船承担,按照 GB/T12763.6-2007 的相关规定进行样品的采集、保存和运输。网具使用浅水I型浮游生物网垂直采样,并配置网口流量计,角弧形量角器、沉锤等设备,由海底至海面垂直拖网。落网速度为 0.5m/s,起网速度为 0.5m/s~0.8m/s。

②游泳动物

游泳生物调查按照 GB/T12763.6-2007 的相关规定进行样品的采集、保存和运输。

A 调查船舶要求:游泳生物调查船应由专业调查船承担,或选择适于在调查海区作业且设备条件良好的渔船承担,调查船舶应具备能在调查海区中定位的卫星定位仪、能在调查海区与陆地基地联络的通讯设备,性能良好的探鱼仪和雷达,能随时观察曳网情况的网位仪,与调查水深和调查网具相匹配的起网机和起吊设备,具备渔获物样品冷藏库或冷冻库。

B 调查工作流程:采用单船有翼单囊拖网进行作业。调查网具网身长 7.5m, 网口目大 45mm, 网囊目大 25mm, 上纲长 6.0m, 每次放网 2 张,每一张网配备两个网板。调查时间选择在白天进行,综合拖速、拖向、流向、流速、风向和风速等多种因素,在距离站位位置 2nmile~4nmile 处放网,拖速控制在 3kn~4kn左右,经 1 小时后正好到达站位位置或附近。临放网前准确测定船位,放网时间以停止曳纲投放,曳纲着底开始受力时为准。拖网中尽量保持拖网方向朝向拖网站位,注意周围船只动态和调查船的拖网是否正常等,若出现不正常拖网时,视其情况改变拖向或立即起网。临起网前准确记录船位,起网时间以起网机开始卷收曳纲时间为准。如遇严重破网等导致渔获量大量减少时,应重新拖网。

C样品处理:将囊网里全部渔获物收集,记录估计的网次总质量(kg)。渔获物总质量在 40kg 以下时,全部取样分析;渔获物大于 40kg 时,从中挑出大型的和稀有的标本后,从渔获物中随机取出渔获物分析样品 20kg 左右,然后把余下的渔获物按品种和不同规格装箱,记录该站位准确渔获物总质量(kg)。

(3) 分析方法

鱼卵与仔稚鱼及游泳动物样品的分析采用《海洋调查规范》 (GB/T12763-2007)进行,各项目的分析方法如表 5.3.1-7。

检测项目	单位	检出限		
鱼类浮游生物调查	《海洋调查规范第6部分:海洋生物调查》	,	/	
— <u></u>	GB/T12763.6-2007 (9)	,	,	
游泳品棚油	《海洋调查规范第6部分:海洋生物调查》	,	,	
游泳动物调查	GB/T12763.6-2007 (14)	′	/	

表 5.3.1-7 样品分析方法一览表

5.3.1.3 评价标准

根据《广东省海洋功能区划(2011—2020 年)》(2012 年),项目调查站位所在的海洋功能区为通明海海洋保护区、雷州湾农渔业区,项目调查站位功能区如图 5.3.1-2 所示。

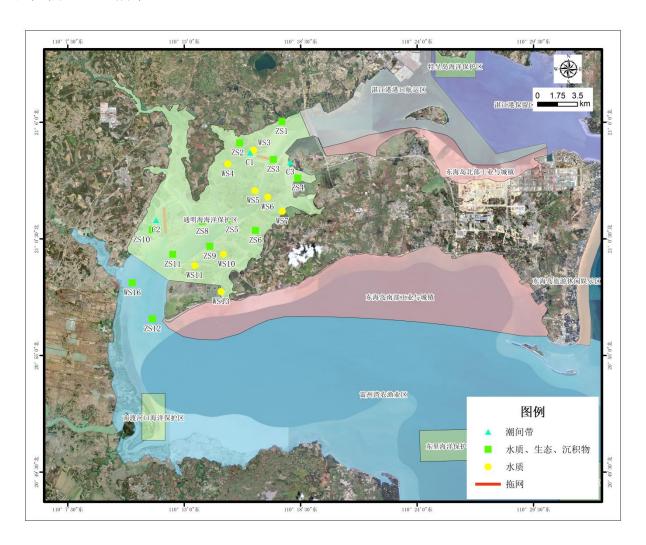


图 5.3.1-2 项目调查站位功能区图

由项目调查站位海洋功能区分布图可知,项目海水水质执行标准要求如表 5.3.1-8,执行标准参照《海水水质标准》(GB3097-1997)。

表 5.3.1-8 调查范围水质执行标准

功能区	功能区名称	调査站位	海水水质标准要求
海洋保护区	通明海海洋保护区	WS3、WS4、WS5、 WS6、WS7、WS10、 WS11、WS13、ZS1、 ZS2、ZS3、ZS4 ZS5、ZS6、ZS8、ZS9、 ZS10、ZS11	执行海水水质 二类标准
农渔业区	雷州湾农渔业区	WS16、ZS12	

由项目调查站位所在海洋功能区图可知,项目海洋沉积物执行标准要求如表 5.3.1-9,执行标准参照《海洋沉积物质量》(GB18668-2002)。

表 5.3.1-9 调查范围海洋沉积物执行标准

功能区	功能区名称	调査站位	海洋沉积物质量标准 要求
海洋保护区	通明海海洋保护区	ZS1、ZS2、ZS3、ZS4、 ZS5、ZS6、ZS8、ZS9、 ZS10、ZS11	执行海洋沉积物质 量一类标准
 农渔业区	 雷州湾农渔业区	WS16, ZS12	里

由项目调查站位所在海洋功能区图可知,项目海洋生物中贝类质量标准参照《海洋生物质量》(GB18421-2001)中一类标准,其他鱼类、甲壳类、软体类等海洋生物质量评价标准采用《全国海岸带和海涂资源综合调查简明规程》中的标准。海岸带生物调查标准中无石油烃限量规定,参考采用《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

5.3.1.4 海水水质调查结果与评价

海水水质调查结果见表 5.3.1-10。

表5.3.1-10海水水质现状监测结果

												PCC-10-1 2	いまないいいい	(IIII () () () ()	•										
检测项	目 7	水温	透明度	溶解氧	盐度	pH 值	悬浮 物	化学 需氧 量	生化 需氧 量	氨氮	活性磷酸盐	无机 氮	硝酸盐氮	亚硝 酸盐	硫化 物	挥发 酚	油类	業大肠 菌群	汞	砷	锌	铜	铅	镉	铬
单位		°C	m	mg/L	‰	无量 纲	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	个/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
W	S3 2	20.6	0.4	7.36	18	7.58	43	1.48	1.87	0.117	0.0248	0.301	0.17	0.014	ND	ND	1.94×10 ⁻²	1.3×10 ²	ND	0.5	7	0.6	0.13	ND	ND
W	S4	18.2	0.4	7.2	18.1	7.38	112	1.67	1.61	0.106	0.0208	0.311	0.188	0.017	0.005	ND	1.40×10 ⁻¹	50	ND	0.5	4	0.6	0.98	1.73	ND
W	S5 2	20.6	0.6	8.06	14.1	7.4	102	2.31	2.69	0.015	0.0127	0.03	1.25×10 ⁻²	0.002	0.003	ND	2.76×10 ⁻²	20	ND	ND	42.2	1.5	0.57	1.81	ND
W	S6 2	22.8	0.4	6.22	15.5	7.04	570	8.72	5.38	0.135	0.0394	0.157	1.92×10 ⁻²	0.003	0.004	ND	2.50×10 ⁻¹	80	0.021	0.6	ND	2.3	0.47	2.94	ND
W	S7	18	0.3	7.67	16.7	6.96	89	2.69	3.17	0.002	0.00806	0.15	0.142	0.006	0.004	ND	3.53×10 ⁻²	4.9×10 ²	0.026	ND	4.8	0.8	0.89	0.49	ND
WS	S10 2	21.8	0.5	7.99	21.4	7.47	60	1.53	1.75	0.005	0.00341	0.205	0.188	0.012	ND	ND	2.31×10 ⁻²	50	0.021	ND	ND	1.3	ND	0.07	ND
WS	S11	19.6	0.4	7.42	21.6	7.74	125	1.27	0.95	0.067	0.0264	0.291	0.208	0.016	0.006	ND	7.61×10 ⁻³	50	ND	0.6	8.2	5.9	1.32	0.24	ND
WS	S13	17.8	0.3	7.8	17.9	6.94	99	1.89	1.5	0.111	0.026	0.459	0.317	0.031	0.004	ND	1.79×10 ⁻²	1.3×10 ³	ND	0.5	ND	1.6	1.39	0.17	ND
WS	S16 2	20.2	0.4	7.54	19.7	7.53	92	1.16	1.08	0.081	0.0276	0.351	0.253	0.017	0.005	ND	7.82×10 ⁻³	1.1×10^{2}	ND	0.7	ND	0.8	ND	0.73	ND
ZS	S1 :	17.8	0.6	7.45	15.2	7.42	68	2.1	1.57	0.057	0.0583	0.292	0.225	0.01	ND	ND	4.29×10 ⁻²	7.0×10^{2}	ND	0.6	5.6	0.8	1.82	0.19	ND
ZS	S2 :	18.6	0.5	6.38	17.2	7.3	80	1.69	1.34	0.077	0.022	0.197	0.114	0.007	ND	ND	2.92×10 ⁻²	1.3×10 ²	ND	0.5	4.4	0.4	0.53	0.18	ND
ZS	S3 :	19.6	0.6	7.57	17.7	7.47	118	1.33	0.92	0.087	0.0282	0.322	0.215	0.02	ND	ND	1.10×10 ⁻²	80	ND	0.6	ND	0.7	0.49	0.55	ND
ZS	S4 2	20.2	0.5	7.54	19.1	7.26	34	2.05	2.51	0.051	0.0158	0.264	0.202	0.011	ND	ND	1.53×10 ⁻¹	<20	ND	ND	44.2	4.8	0.71	0.1	ND
ZS	S5 :	19.4	0.7	7.3	19.9	7.63	135	1.25	0.88	0.069	0.0245	0.289	0.202	0.018	ND	ND	3.58×10 ⁻²	80	ND	0.6	ND	0.9	0.31	0.69	ND
ZS	S6	19.8	0.6	7.76	15	7.26	1089	4.72	4.3	0.037	0.0102	0.062	2.07×10 ⁻²	0.004	0.004	ND	4.94×10 ⁻²	1.7×10 ²	ND	0.5	7.2	0.5	0.47	0.84	ND
ZS	S8	19.6	0.9	7.33	20.8	7.64	101	1.26	1.23	0.055	0.0152	0.205	0.139	0.011	0.003	ND	6.40×10 ⁻²	20	ND	0.6	10.2	0.5	1.25	0.2	ND
ZS	S9	20	0.6	7.83	21.8	7.63	46	1.16	1.14	0.073	0.0248	0.304	0.214	0.017	ND	ND	2.30×10 ⁻²	<20	ND	0.6	ND	1	0.44	0.05	ND
ZS	310	20	0.5	7.47	17.9	7.42	124	1.56	1.27	0.037	0.027	0.258	0.201	0.02	0.004	ND	2.57×10 ⁻²	7.9×10^{2}	ND	ND	7.2	0.6	4.56	1.53	ND
ZS	11	19.4	0.7	7.9	22.7	7.58	18	1.04	1.07	0.06	0.0217	0.261	0.188	0.013	ND	ND	1.25×10 ⁻²	50	ND	0.7	14.3	0.6	0.42	2.39	ND
ZS	312	20.2	0.6	6.87	23.9	7.82	112	0.96	1.07	0.019	0.0146	0.143	0.116	0.008	0.006	ND	6.95×10 ⁻²	<20	ND	0.8	9.6	0.9	0.28	0.59	ND

1、区域整体水质状况

2024年3月东海岛西部海域海水环境状况总体较好,除pH值、化学需氧量、生化需氧量、活性磷酸盐、无机氮、油类、粪大肠菌群部分站位不达标外,其他监测因子硫化物、挥发酚、汞、砷、锌、铜、铅、镉、铬均符合《海水水质标准》第二类标准。

在整个调查区域中,符合二类海水水质标准的调查站位占整个调查站位的 5.00%,超过第二类海水水质的调查站位站整个调查占位的 95.00%。调查海域 pH 值浓度超标率高达 95.00%,大大增加了该海域超二类海水水质的面积占比。

2、区域各水质监测指标状况

(1) 水温

调查海域水温介于 17.8~22.8℃之间, 平均值为 19.71℃。

(2) pH 值

调查海域 pH 介于 6.94~7.82 之间,平均值为 7.42。符合二类海水水质标准的调查站位站整个调查占位的 5.00%,超过二类海水水质标准的调查站位站整个调查占位的 95.00%。调查海域的 pH 质量状况较差。

(3) 盐度

调查海域盐度介于 14.1‰~23.9‰之间, 平均值为 18.7‰。

(4) 透明度

调查海域透明度介于 $0.3\sim0.9$ m 之间, 平均值为 0.52m。

(5) 溶解氧

调查海域溶解氧含量介于 6.22mg/L~8.06mg/L 之间, 平均值为 7.43mg/L。 各调查站位溶解氧均符合第二类海水水质标准,海水中的溶解氧质量状况好。

(6) 油类

调查海域石油类含量介于 0.00761mg/L ~ 0.25mg/L 之间, 平均值为 0.052mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 75.00%,超过第二类海水水质标准的调查站位占总调查站位数的 25.00%,海水中的石油类质量状况较好。

(7) 生化需氧量

调查海域生化需氧量含量介于 0.88~5.38mg/L 之间, 平均值为 1.87mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 85.00%, 超过第二类海

水水质标准的调查站位占总调查站位数的 15.00%。海水中生化需氧量整体质量 状况良好。

(8) 化学需氧量

调查海域化学需氧量含量介于 0.96mg/L~8.72mg/L 之间, 平均值为 2.09mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 85.00%, 超过第二类海水水质标准的站位占总站位的 15.00%。海水中化学需氧量整体质量 状况较好。

(9) 活性磷酸盐

调查海域活性磷酸盐含量介于 0.00341mg/L~0.0583mg/L 之间, 平均值为 0.0225mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 90.00%, 超过第二类海水水质标准的调查站位占总调查站位数的 10.00%。海水中活性磷酸盐整体质量状况较好

(10) 无机氮

调查海域无机氮含量介于 0.03mg/L~0.459mg/L 之间, 平均值为 0.243mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 70.00%, 超过第二类海水水质标准的调查站位占总调查站位数的 30.00%。

(11) 硝酸盐氮

调查海域硝酸盐氮含量介于 0.0114~0.317mg/L, 平均值为 0.193mg/L。

(12) 亚硝酸盐

调查海域硝酸盐含量介于 $0.002\sim0.031$ mg/L,平均值为 0.0129mg/L。

(13) 氨氮

调查海域氨氮含量介于 0.002~0.135mg/L, 平均值为 0.063mg/L。

(14) 悬浮物

调查海域悬浮物含量介于 $18mg/L \sim 1089mg/L$ 之间,平均值为 160.85mg/L。

(15) 硫化物

调查海域悬浮物含量介于 $ND \sim 0.006 mg/L$ 之间,平均值为 0.004 mg/L。

(16) 挥发性酚

调查海域挥发性酚均未检出,调查海域海水中挥发性酚整体质量状况好。

(17) 粪大肠杆菌

调查海域粪大肠杆菌含量介于 20 个/L~1300 个/L 之间,平均值为 218 个/L。

(18) 汞

调查海域汞含量介于 ND~0.026μg/L 之间,平均值为 0.0034μg/L。各调查站位均符合第二类海水水质标准。

(19) 砷

调查海域砷含量介于 $ND\sim0.8\mu g/L$ 之间,平均值为 $0.445\mu g/L$ 。各调查站位均符合第二类海水水质标准。

(20) 锌

调查海域锌含量介于 ND~44.2μg/L 之间,平均值为 8.45μg/L。各调查站位均符合第二类海水水质标准。

(21)铜

调查海域铜含量介于 0.4~5.9μg/L 之间,平均值为 1.35μg/L。各调查站位均符合第二类海水水质标准。

(22) 铅

调查海域铅含量介于 ND~4.56μg/L 之间,平均值为 0.85μg/L。各调查站位均符合第二类海水水质标准。

(23) 镉

调查海域镉含量介于 ND~2.94μg/L 之间,平均值为 0.775μg/L。各调查站位均符合第二类海水水质标准。

(24) 铬

调查海域锌均未检出,各调查站位均符合第二类海水水质标准,调查海域海水中铬整体质量状况好。

3、功能区水质状况

采用上述单项指数法,对现状监测结果进行标准指数计算。由调查及评级结果可知,本次调查共布设 20 个调查站位,调查海域功能区水质达标情况如下:调查海域执行海水水质二类标准,水质整体超标率为 95.00%,主要超标因子为pH 值,其次为无机氮、油类、化学需氧量、生化需氧量、活性磷酸盐及粪大肠菌群,其他因子全部符合海水水质二类标准。其中无机氮超标率为 30.00%,油类超标率为 25.00%,生化需氧量超标率为 15.00%,化学需氧量超标率为 10.00%,活性磷酸盐超标率为 10.00%。

表 5.3.1-11 海水水质质量指数

项目	溶解氧	pH 值	化学需氧量	生化需氧量	活性磷酸盐	无机氮	硫化物	挥发酚	油类	業大肠菌 群	汞	砷	锌	铜	铅	镉	铬
WS3	0.405	1.629	0.493	0.623	0.827	1.003	0.030	0.110	0.388	0.065	0.018	0.017	0.140	0.006	0.026	0.001	0.0020
WS4	0.500	2.200	0.557	0.537	0.693	1.037	0.100	0.110	2.800	0.025	0.018	0.017	0.080	0.006	0.196	0.346	0.0020
WS5	0.228	2.143	0.770	0.897	0.423	0.100	0.060	0.110	0.552	0.010	0.018	0.008	0.844	0.015	0.114	0.362	0.0020
WS6	0.661	3.171	2.907	1.793	1.313	0.523	0.080	0.110	5.000	0.040	0.105	0.020	0.031	0.023	0.094	0.588	0.0020
WS7	0.398	3.400	0.897	1.057	0.269	0.500	0.080	0.110	0.706	0.245	0.130	0.008	0.096	0.008	0.178	0.098	0.0020
WS10	0.206	1.943	0.510	0.583	0.114	0.683	0.030	0.110	0.462	0.025	0.105	0.008	0.031	0.013	0.003	0.014	0.0020
WS11	0.416	1.171	0.423	0.317	0.880	0.970	0.120	0.110	0.152	0.025	0.018	0.020	0.164	0.059	0.264	0.048	0.0020
WS13	0.374	3.457	0.630	0.500	0.867	1.530	0.080	0.110	0.358	0.650	0.018	0.017	0.031	0.016	0.278	0.034	0.0020
WS16	0.370	1.771	0.387	0.360	0.920	1.170	0.100	0.110	0.156	0.055	0.018	0.023	0.031	0.008	0.003	0.146	0.0020
ZS1	0.452	2.086	0.700	0.523	1.943	0.973	0.030	0.110	0.858	0.350	0.018	0.020	0.112	0.008	0.364	0.038	0.0020
ZS2	0.681	2.429	0.563	0.447	0.733	0.657	0.030	0.110	0.584	0.065	0.018	0.017	0.088	0.004	0.106	0.036	0.0020
ZS3	0.379	1.943	0.443	0.307	0.940	1.073	0.030	0.110	0.220	0.040	0.018	0.020	0.031	0.007	0.098	0.110	0.0020
ZS4	0.370	2.543	0.683	0.837	0.527	0.880	0.030	0.110	3.060	0.005	0.018	0.008	0.884	0.048	0.142	0.020	0.0020
ZS5	0.449	1.486	0.417	0.293	0.817	0.963	0.030	0.110	0.716	0.040	0.018	0.020	0.031	0.009	0.062	0.138	0.0020
ZS6	0.328	2.543	1.573	1.433	0.340	0.207	0.080	0.110	0.988	0.085	0.018	0.017	0.144	0.005	0.094	0.168	0.0020
ZS8	0.437	1.457	0.420	0.410	0.507	0.683	0.060	0.110	1.280	0.010	0.018	0.020	0.204	0.005	0.250	0.040	0.0020
ZS9	0.305	1.486	0.387	0.380	0.827	1.013	0.030	0.110	0.460	0.005	0.018	0.020	0.031	0.010	0.088	0.010	0.0020
ZS10	0.393	2.086	0.520	0.423	0.900	0.860	0.080	0.110	0.514	0.395	0.018	0.008	0.144	0.006	0.912	0.306	0.0020
ZS11	0.306	1.629	0.347	0.357	0.723	0.870	0.030	0.110	0.250	0.025	0.018	0.023	0.286	0.006	0.084	0.478	0.0020
ZS12	0.537	0.943	0.320	0.357	0.487	0.477	0.120	0.110	1.390	0.005	0.018	0.027	0.192	0.009	0.056	0.118	0.0020
最小值	0.206	0.943	0.320	0.293	0.114	0.100	0.030	0.110	0.152	0.005	0.018	0.008	0.031	0.004	0.003	0.001	0.002
最大值	0.681	3.457	2.907	1.793	1.943	1.530	0.120	0.110	5.000	0.65	0.130	0.027	0.884	0.059	0.912	0.588	0.002
超标率	0.00%	95.00%	10.00%	15.00%	10.00%	30.00%	0.00%	0.00%	25.00%	0%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

5.3.1.5 海洋沉积物质量调查与评价

海洋沉积物调查结果见表 5.3.1-12。

1、区域整体海洋沉积物质量状况

本次调查海域沉积物环境状况总体情况较好,整个调查区域除有机碳、砷在部分站位有超过一类海洋沉积物标准外,其他因子均符合第一类海洋沉积物标准,质量等级为优。

2、区域整体海洋沉积物监测指标状况

(1) 油类

调查海域沉积物中石油类的含量介于 48.1×10⁻⁶~175×10⁻⁶之间, 平均值 72.4×10⁻⁶。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 100%, 沉积物中石油类的整体质量状况较好。

(2) 有机碳

调查海域沉积物中有机碳的含量介于 0.986%~2.83%之间,平均值 1.51%。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 83.33%,超过第一类海洋沉积物质量标准的调查站位占总调查站位数的 16.67%,沉积物中有机碳的整体质量状况较好。

(3) 硫化物

调查海域沉积物中硫化物的含量介于 1.6×10⁻⁶~132.4×10⁻⁶之间,平均值 39.34×10⁻⁶。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 100%。 沉积物中硫化物的整体质量状况较好。

(4) 铬(Cr)

调查海域沉积物中铬的含量介于 37.6×10⁻⁶~77.8×10⁻⁶之间,平均值 51.5×10⁻⁶, 所有调查站位铬均符合第一类海洋沉积物质量标准,沉积物中铬的质量状况较好。

(5) 锌(Zn)

调查海域沉积物中锌的含量介于 51.1×10⁻⁶~103×10⁻⁶之间,平均值 79.5×10⁻⁶, 所有调查站位锌均符合第一类海洋沉积物质量标准,沉积物中锌的质量状况较好。

(6) 镉(Cd)

调查海域沉积物中镉的含量介于 ND~0.07×10⁻⁶之间,平均值 0.037×10⁻⁶, 所有调查站位镉均符合第一类海洋沉积物质量标准,沉积物中镉的质量状况较好。

(7) 铅(Pb)

调查海域沉积物中铅的含量介于 13.3×10-6~34.2×10-6之间, 平均值 22.725×10-6, 所有调查站位铅均符合第一类海洋沉积物质量标准, 沉积物中铅的质量状况较好。

(8) 砷 (As)

调查海域沉积物中砷的含量介于 5.86×10⁻⁶~21.5×10⁻⁶之间, 平均值 11.22×10⁻⁶, 符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 91.67%, 超过第一类海洋沉积物质量标准的调查站位占总调查站位数的 8.33%, 沉积物中砷的质量状况较好。

(9) 汞 (Hg)

调查海域沉积物中汞的含量介于 0.01×10⁻⁶~0.043×10⁻⁶ 之间, 平均值 0.023×10⁻⁶, 所有调查站位汞均符合第一类海洋沉积物质量标准, 沉积物中汞的质量状况较好。

(10)铜(Cu)

调查海域沉积物中铜的含量介于 6.3×10⁻⁶~18.1×10⁻⁶之间, 平均值 11.18×10⁻⁶, 所有调查站位铜均符合第一类海洋沉积物质量标准, 沉积物中铜的质量状况较好。

表 5.3.1-12 海洋沉积物现状监测结果

₩ 元 日	***						点位编号	号/检测结果	Ļ				
检测项目	単位	ZS1	ZS2	ZS3	ZS4	ZS5	ZS6	ZS8	ZS9	ZS10	ZS11	ZS12	WS16
含水率	%	4.4	3.2	2.3	0.9	1.8	3.2	2	2.5	6.7	5.1	1.4	3.3
石油类	10-6	175	100	62.6	61.5	60.8	65.1	49.4	48.1	58.8	66.1	54.8	66.7
有机碳	%	2.73	2.83	1.18	1.2	1.41	1.62	1.29	1.17	0.986	1.33	1.06	1.37
硫化物	10-6	42.9	1.6	22.3	43.8	10.3	84.3	23.4	32	70.4	4.5	4.2	132.4
铜	10-6	18.1	16.9	6.3	10.9	10.1	15.6	7.3	10	8.4	9.1	9.6	11.9
铅	10-6	26.5	32.9	13.7	18.3	20.7	34.2	18.6	26.5	13.3	23.4	18.3	26.3
镉	10-6	0.05	ND	0.04	0.07	ND	0.04	ND	0.04	ND	0.04	0.04	0.04
铬	10-6	77.8	63.7	37.6	39.7	47.9	42.2	40.1	45	66.8	50.5	40.2	66.9
锌	10-6	72.8	99.6	67.6	68.5	83.3	99.5	69.3	80.9	51.1	87.6	70.6	103
砷	10-6	15.8	18	5.86	10.1	9.53	21.5	7.55	10.1	6.79	10.2	8.69	10.6
汞	10-6	0.043	0.032	0.016	0.01	0.019	0.025	0.018	0.029	0.014	0.027	0.021	0.026

3、海洋沉积物质量状况

采用上述单项指数法,对现状监测结果进行标准指数计算。调查海域属于通明海海洋保护区、雷州湾农渔业区,执行海洋沉积物质量第一类标准。由调查及评价结果可知,由于有机碳和砷出现超标,调查区域沉积物环境一般。

表 5.3.13 海洋沉积物质量指数

检测项	检测项目		有机碳	硫化物	铜	铅	镉	铬	锌	砷	汞
	ZS1	0.350	1.365	0.143	0.517	0.442	0.100	0.973	0.485	0.790	0.215
	ZS2	0.200	1.415	0.005	0.483	0.548	0.040	0.796	0.664	0.900	0.160
	ZS3	0.125	0.590	0.074	0.180	0.228	0.080	0.470	0.451	0.293	0.080
	ZS4	0.123	0.600	0.146	0.311	0.305	0.140	0.496	0.457	0.505	0.050
	ZS5	0.122	0.705	0.034	0.289	0.345	0.040	0.599	0.555	0.477	0.095
上於始旦	ZS6	0.130	0.810	0.281	0.446	0.570	0.080	0.528	0.663	1.075	0.125
点位编号	ZS8	0.099	0.645	0.078	0.209	0.310	0.040	0.501	0.462	0.378	0.090
	ZS9	0.096	0.585	0.107	0.286	0.442	0.080	0.563	0.539	0.505	0.145
	ZS10	0.118	0.493	0.235	0.240	0.222	0.040	0.835	0.341	0.340	0.070
	ZS11	0.132	0.665	0.015	0.260	0.390	0.080	0.631	0.584	0.510	0.135
	ZS12	0.110	0.530	0.014	0.274	0.305	0.080	0.503	0.471	0.435	0.105
	WS16	0.133	0.685	0.441	0.340	0.438	0.080	0.836	0.687	0.530	0.130
最大	值	0.350	1.415	0.441	0.517	0.570	0.140	0.973	0.687	1.075	0.215
最小	值	0.096	0.493	0.005	0.180	0.222	0.040	0.470	0.341	0.293	0.050
超标	率	0.00%	16.67%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	8.33%	0.00%

5.3.1.6 海洋生物质量调查与评价

本次调查海洋生物体质量调查结果见表 5.3.1-14。

表 5.3.1-14 海洋牛物质量调查结果

			检测结果(×10-6)									
站位	物种名称	类别	石油烃	铬	铜	锌	砷	镉	铅	总汞		
T1	口虾蛄	甲壳类	11	0.46	145	138	8.18	3.46	0.14	0.128		
T2	口虾蛄	甲壳类	10.8	0.5	194	151	10.4	4.83	0.18	0.176		

1、区域整体海洋生物质量状况

本次调查区域的环境监测生物均为甲壳类。除甲壳动物体内的铜、锌、镉含量超过《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求,其他因子铅、汞石油烃符合《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求。

2、区域海洋生物监测指标状况

(1) 石油烃

生物体中石油烃全部测值范围为 10.8~11mg/kg, 平均值为 10.9mg/kg, 由评价结果可知,调查站位的石油烃含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物体质量标准。

(2) 辂

生物体中铬全部测值范围为 $0.46\sim0.5$ mg/kg, 平均值为 0.48mg/kg。

(3)铜

生物体中铜全部测值范围为 145~194mg/kg, 平均值为 169.5mg/kg, 由评价结果可知,铜含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(4) 锌

生物体中锌全部测值范围为 138~151mg/kg, 平均值为 144.5mg/kg, 由评价结果可知, 锌含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(5) 砷

生物体中砷全部测值范围为 8.18~10.4mg/kg, 平均值为 9.29mg/kg。

(6) 镉

生物体中镉全部测值范围为 3.46~4.83mg/kg, 平均值为 4.145mg/kg, 由评价结果可知,镉含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(7) 铅

生物体中铅全部测值范围为 0.14~0.18mg/kg, 平均值为 0.16mg/kg, 由评价结果可知,铅含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(8) 汞

生物体中汞全部测值范围为 0.0128~0.176mg/kg, 平均值为 0.152mg/kg, 由评价结果可知, 汞含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

3、各功能区海洋生物质量状况

采用上述单项指数法,对现状监测结果进行标准指数计算。调查海域功能区位于通明海海洋保护区、雷州湾农渔业区,执行海洋生物达标情况《海洋生物质量》(GB18421-2001)第一类标准,重金属及石油烃含量的评价标准采用《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的相应标准。调查区域共2个调查站位,海洋生物质量整体超标率为100%,调查站位均出现超标现象,超标因子主要为铜、镉、锌。

站	物种名			检测结果									
位	称	类别	石油烃	铜	锌	镉	铅	总汞					
T1	口虾蛄	甲壳类	0.55	1.45	0.92	1.73	0.07	0.64					
T2	口虾蛄	甲壳类	0.54	1.94	1.01	2.42	0.09	0.88					
	最大值	İ	0.55	1.94	1.01	2.42	0.09	0.88					
	最小值	Ĺ	0.54	1.45	0.92	1.73	0.07	0.64					
超标率			0.00%	100.00%	50.00%	100.00%	0.00%	0.00%					

表 5.3.1-15 海洋生物质量指数

5.3.1.7 海洋生态调查结果

本次调查区域共布设了 12 个调查站位,分析内容主要包括叶绿素 a、初级生产力、浮游植物、浮游动物、底栖生物、潮间带生物、渔业资源(鱼卵仔稚鱼、

游泳动物)。样品的采集和分析均按《海洋监测规范》(GB17378-2007)和《海洋调查规范》(GB/T12763-2007)中规定的方法进行。

1、叶绿素 a 和初级生产力

(1) 叶绿素 a

本次调查海区表层水体叶绿素 a 含量的变化范围为 0.722~18.5mg/L, 平均值为 3.61mg/L, 其中 ZS6 站位叶绿素 a 含量最高, ZS8 站位叶绿素 a 含量最低。各站位海水叶绿素 a 含量见表 5.3.1-14。

(2) 初级生产力

调查海域初级生产力的变化范围为 31.502~677.655mg·C/(m²·d), 平均值为 125.047mg·C/(m²·d), 其中 ZS6 站位初级生产力水平最高, WS16 站位最低。 各站位海水初级生产力水平见表 5.3.1-16。

项目	叶绿素 a(mg/L)	初级生产力(mg·C/m²·d)
WS16	1.29	31.502
ZS1	1.45	38.360
ZS2	2.22	54.212
ZS3	1.23	45.055
ZS4	10.2	311.355
ZS5	1.32	56.410
ZS6	18.5	677.655
ZS8	0.722	39.670
ZS9	1.11	40.659
ZS10	1.78	43.468
ZS11	1.06	45.299
ZS12	1.33	48.718
范围	0.722~18.5	31.502~677.655
平均值	3.61	125.047

表 5.3.1-16 叶绿素 a 和初级生产力测定结果

2、浮游植物

(1) 种类组成和优势种

本次调查共记录浮游植物 4 门 30 属 54 种。其中以硅藻门出现的种类为最多,为 23 属 46 种,占总种数的 85.19%(表 3.4-2);甲藻门共出现 2 属 2 种,占总种数的 3.70%;蓝藻门共出现 4 属 5 种,占总种数的 9.26%;绿藻门共出现 1 属 1 种,占总种数的 1.85%。

表 5.3.1-17 浮游植物种类组成

类群	属数	种类数	种类组成比例(%)
硅藻	23	46	85.19
甲藻	2	2	3.70
蓝藻	4	5	9.26
绿藻	1	1	1.85
合计	30	54	100

以优势度 Y 大于 0.02 为判断标准,本次调查的浮游植物优势种共出现 2 种,为假微型海链藻(Thalassiosirapseudonana)、希罗鞘丝藻(Pleurosigmaaestuarii)。这 2 种优势种的丰度占调查海区总丰度的 73.94%。假微型海链藻的优势度最高为 0.1385,占调查海区总丰度的 41.55%,为本次调查的第一优势种,其次是希罗鞘丝藻的优势度为 0.081,占调查海区总丰度的 32.40%。

表 5.3.1-18 浮游植物优势种及优势度

种名	类群	优势度	占总丰度百分比 (%)
假微型海链藻(Thalassiosirapseudonana)	硅藻门	0.1385	41.55
希罗鞘丝藻(Pleurosigmaaestuarii)。	硅藻门	0.0810	32.40

(2) 丰富组成

调查海区浮游植物丰度变化范围为 $12.7\times10^3\sim2151\times10^3$ cells/m³, 平均为 680.085×10^3 cells/m³ (表 5.3.1-19)。不同站位的丰度差异较大,最高丰度出现在 ZS6 站位,为 2151×10^3 cells/m³; 最低丰度则出现在 ZS11 站位,仅为 12.7×10^3 cells/m³。

浮游植物丰度组成以硅藻占优势,其丰度占各站总丰度的 6.80%~100.00%, 平均为 74.08%, 硅藻在 12 个监测站都有出现,出现频率为 100.00%;蓝藻在各站丰度中的所占比例为 0.00%~93.20%,平均为 24.37%;甲藻在各站丰度中的所占比例为 0.00%~15.48%,平均为 1.38%;绿藻在各站丰度中的所占比例为 0.00%~2.13%,平均为 0.18%。

表 5.3.1-19 浮游植物丰度(×103cells/m3)及其百分比值(%)

عامد	冶十	硅	藻	甲	藻	蓝	·····································	绉	禄
站位	总丰度	丰度	百分比	丰度	百分比	丰度	百分比	丰度	百分比
WS16	23.58	23.58	100.00%	0	0.00%	0	0.00%	0	0.00%
ZS1	1774.5	1633.5	92.05%	0	0.00%	141	7.95%	0	0.00%
ZS2	45.01	45.01	100.00%	0	0.00%	0	0.00%	0	0.00%
ZS3	1788.34	121.67	6.80%	0	0.00%	1666.67	93.20%	0	0.00%
ZS4	51.57	51.57	100.00%	0	0.00%	0	0.00%	0	0.00%
ZS5	79.04	29.04	36.74%	0.81	1.02%	49.19	62.23%	0	0.00%
ZS6	2151	1039.5	48.33%	333	15.48%	778.5	36.19%	0	0.00%
ZS8	992	162	16.33%	0	0.00%	830	83.67%	0	0.00%
ZS9	16.42	16.07	97.87%	0	0.00%	0	0.00%	0.35	2.13%
ZS10	1171.5	1063.5	90.78%	0	0.00%	108	9.22%	0	0.00%
ZS11	12.7	12.7	100.00%	0	0.00%	0	0.00%	0	0.00%
ZS12	55.36	55.36	100.00%	0	0.00%	0	0.00%	0	0.00%
最大值	2151.00	1633.50	100.00%	333.00	15.48%	1666.67	93.20%	0.35	2.13%
最小值	12.70	12.70	6.80%	0.00	0.00%	0.00	0.00%	0.00	0.00%
平均值	680.09	354.46	74.08%	27.82	1.38%	297.78	24.37%	0.03	0.18%

(3) 多样性水平

本次调查,各站位浮游植物种数变化范围 20~37 种,平均 27 种(表 5.3.1-20)。 Shannon-wiener 多样性指数范围为 1.376~3.253, 平均为 2.001, 多样性指数以 S8 站位最高, S14 站位最低。Pielou 均匀度指数范围为 0.304~0.624, 平均为 0.424, 各站位生物量种间分布不均匀。

表 5.3.1-20 浮游植物的多样性及均匀度指数

站位	种类数	多样性指数 H	均匀度J
WS16	16	3.558	0.618
ZS1	8	0.736	0.128
ZS2	10	2.977	0.517
ZS3	10	0.433	0.075
ZS4	7	2.480	0.431
ZS5	10	1.724	0.300
ZS6	8	2.005	0.348
ZS8	10	0.867	0.151
ZS9	16	3.719	0.646
ZS10	13	0.973	0.169

站位	种类数	多样性指数 H	均匀度J
ZS11	12	3.262	0.567
ZS12	14	3.284	0.571
范围	7~16	0.433~3.719	0.075~0.646
平均值	11.167	2.168	0.377

3、浮游动物

(1) 种类组成

本次调查共记录浮游动物 5 门 16 属 31 种(见附录 II—浮游动物种类名录), 其中节肢动物 16 种,浮游幼虫 12 种,被囊动物、原生动物、栉板动物各 1 种。

(2) 浮游动物生物量、密度及其分布

本次调查结果显示,各采样站浮游动物湿重生物量变化幅度为 18.82~ 117.98mg/m³, 平均生物量为 44.24mg/m³。在整个调查区中,生物量最高出现在 ZS12 站位,为 117.98mg/m³,最低出现在 ZS11 站位,为 18.52mg/m³。本次调查 结果显示,在个体数量分布方面,浮游动物密度变化幅度为 226.68~2772.57ind./m³,平均密度为 711.68ind./m³。浮游生物最高密度出现在 ZS12 站位,为 2772.57ind./m³,最低密度则出现在 ZS3 站位,为 226.68ind./m³(表 5.3.1-21)。

站位 生物量(mg/m³) 密度 (ind./m³) WS16 51.54 836.05 ZS1 33.00 310.00 ZS2 74.29 729.36 ZS3 22.67 226.68 ZS4 427.89 41.11 ZS5 19.14 772.46 ZS6 59.75 715.00 ZS8 424.98 28.17 **ZS9** 21.66 451.08 ZS10 43.00 502.50 ZS11 18.52 371.55 ZS12 117.98 2772.57 范围 18.82~117.98 226.68~2772.57 平均值 711.68 44.24

表 5.3.1-21 浮游动物生物量及密度

(3) 生物多样性指数及均匀度

本次调查海域各测站的浮游动物平均出现种类为 13 种(7~23 种);种类多

样性指数范围为 1.654~2.646 之间,平均为 2.191,多样性指数最高出现在 S8 站位,其次为 ZS1 站位(多样性指数为 2.646),最低则出现在 WS16 站位;种类均匀度的分布趋势与多样性指数相似,其变化范围在 0.334~0.534 之间,平均为 0.442,最高出现在 ZS1 站位,其次为 ZS4 站位(均匀度指数为 0.532),最低出现在 WS16 站位(见表 5.3.1-22)。

表 5.3.1-22 浮游动物的多样性指数及均匀度

站位	种类数	多样性指数 H	均匀度指数J
WS16	8	1.654	0.334
ZS1	9	2.646	0.534
ZS2	8	2.103	0.425
ZS3	10	1.951	0.394
ZS4	13	2.636	0.532
ZS5	17	2.166	0.437
ZS6	7	1.877	0.379
ZS8	9	2.174	0.439
ZS9	14	2.088	0.421
ZS10	10	1.959	0.396
ZS11	20	2.44	0.493
ZS12	23	2.602	0.525
范围	7~23	1.654~2.646	0.334~0.534
平均值	13	2.191	0.442

(4) 优势种及其分布

以优势度≥0.02 为判断标准,本调查海域在调查期间浮游动物的优势种有 6种,分别是刺尾纺锤水蚤(Acartiaspinicauda)、短尾类幼虫(Brachyuralarva)、蔓足类幼虫(Cirripeditelarva)、披针纺锤水蚤(Acartiasouthwelli)、桡足类幼体(Copepodite)和小拟哲水蚤(Paracalanusparvus),优势度指数分别为 0.113、0.030、0.089、0.045、0.550 和 0.111(见表 5.3.1-23)。这些物种的平均密度分别为 90.46ind./m³、16.68ind./m³、95.73ind./m³、65.60ind./m³、154.88ind./m³ 和 273.77ind./m³,分别占浮游动物总密度的 11.65%、2.34%、12.33%、8.45%、32.64% 和 19.23%。桡足类幼体是本次调查的第一物种,该种类主要分布在本海域的 ZS12 及 WS16 站位,其密度为 254.55ind./m³ 和 649.28ind./m³。

表 5.3.1-23 浮游动物的优势种及优势度

中文名	拉丁文	优势度 Y	平均密度(ind./m³)
刺尾纺锤水蚤	Acartiaspinicauda	0.113	90.46
短尾类幼虫	Brachyuralarva	0.030	16.68
蔓足类幼虫	Cirripeditelarva	0.089	95.73
披针纺锤水蚤	Acartiasouthwelli	0.045	65.60
桡足类幼体	Copepodite	0.550	154.88
小拟哲水蚤	Paracalanusparvus	0.111	273.77

4、底栖生物

(1) 种类组成

本次调查共记录大型底栖动物 38 种,其中环节动物 15 种、节肢动物 13 种、软体动物 7 种、脊索动物、纽形动物和刺胞动物各 1 种。软体动物、环节动物、节肢动物和其他动物分别占总种数的 38.47%、34.21%、18.42%、2.63%、2.63%和 2.63%,环节动物是构成本次调查海区大型底栖生物的主要类群。

(2) 底栖生物栖息密度和生物量

底栖生物定量采泥样品分析结果表明,调查海区大型底栖生物平均栖息密度为137.503ind./m²,以节肢动物的平均栖息密度最高,为92.918ind./m²,占总平均密度的67.57%;环节动物次之,平均栖息密度为35.141ind./m²,占总平均密度的25.56%;软体动物的平均栖息密度为5.417ind./m²,占总平均密度的3.94%;纽形动物的平均栖息密度为3.195ind./m²,占总平均密度的2.32%%;刺胞动物及脊索动物的平均栖息密度为0.417ind./m²,占总平均密度的0.30%(表5.3.1-24)。

底栖生物的平均生物量为 4.037g/m², 以节肢动物居首位, 平均生物量为 2.929g/m², 占总平均生物量的 72.55%; 其次为环节动物, 平均生物量为 1.81g/m², 占总平均生物量的 8.71%; 环节动物的平均生物量为 0.504g/m², 占总平均生物量的 12.43%; 软体动物的平均生物量为 0.502g/m², 占总平均生物量的 12.43%; 脊索动物的平均生物量为 0.047g/m², 占总平均生物量的 1.16%; 纽形动物的平均生物量为 0.032g/m², 占总平均生物量的 0.79%; 刺胞动物的平均生物量为 0.024g/m², 占总平均生物量的 0.60%; (表 5.3.1-24)。

表 5.3.1-24 底栖生物各类群的生物量和栖息密度

站位	项目	合计	环节动 物门	节肢动 物门	纽形动 物门	软体动 物门	刺胞动 物门	脊索动 物门
WS16	密度 (ind./m²)	35.000	15.000	5.000	0.000	15.000	0.000	0.000
WSIO	生物量 (g/m²)	4.105	0.105	0.030	0.000	3.970	0.000	0.000
ZS1	密度 (ind./m²)	193.33	0.000	193.330	0.000	0.000	0.000	0.000
251	生物量 (g/m²)	17.733	0.000	17.733	0.000	0.000	0.000	0.000
ZS2	密度 (ind./m²)	300.00	0.000	300.000	0.000	0.000	0.000	0.000
2.52	生物量 (g/m²)	3.160	0.000	3.160	0.000	0.000	0.000	0.000
ZS3	密度 (ind./m²)	46.680	40.010	6.670	0.000	0.000	0.000	0.000
220	生物量 (g/m²)	1.327	0.494	0.833	0.000	0.000	0.000	0.000
ZS4	密度 (ind./m²)	285.00	35.000	250.000	0.000	0.000	0.000	0.000
	生物量 (g/m²)	5.530	0.460	5.070	0.000	0.000	0.000	0.000
ZS5	密度 (ind./m²)	40.020	20.010	6.670	6.670	6.670	0.000	0.000
-	生物量 (g/m²)	0.779	0.259	0.253	0.100	0.167	0.000	0.000
ZS6	密度 (ind./m²)	220.00	73.330	146.670	0.000	0.000	0.000	0.000
-	生物量 (g/m²)	5.294	1.180	4.114	0.000	0.000	0.000	0.000
ZS8	密度 (ind./m²)	260.00	60.000	200.000	0.000	0.000	0.000	0.000
	生物量 (g/m²)	4.806	0.893	3.913	0.000	0.000	0.000	0.000
ZS9	密度 (ind./m²)	30.000	20.000	0.000	0.000	5.000	5.000	0.000
LOY	生物量 (g/m²)	0.705	0.390	0.000	0.000	0.025	0.290	0.000
ZS10	密度 (ind./m²)	140.01 0	113.34 0	6.670	6.670	13.330	0.000	0.000
	生物量	1.568	1.281	0.040	0.047	0.200	0.000	0.000

站位	项目	合计	环节动 物门	节肢动 物门	纽形动 物门	软体动 物门	刺胞动 物门	脊索动 物门
	(g/m^2)							
ZS11	密度 (ind./m²)	90.000	45.000	0.000	20.000	20.000	0.000	5.000
ZSII	生物量 (g/m²)	2.710	0.985	0.000	0.175	0.990	0.000	0.560
ZS12	密度 (ind./m²)	10.000	0.000	0.000	5.000	5.000	0.000	0.000
ZS12	生物量 (g/m²)	0.730	0.000	0.000	0.060	0.670	0.000	0.000
平均	密度 (ind./m²)	137.50	35.141	92.918	3.195	5.417	0.417	0.417
	生物量 (g/m²)	4.037	0.504	2.929	0.032	0.502	0.024	0.047

本次调查结果表明,各监测站位的底栖生物栖息密度分布不均匀,其中 ZS2 站位密度最高,为 300 ind./m²。 ZS2 站位密度最高的原因在于记录到数量较多的节肢动物—日本长尾虫(*Apseudesnipponicus*),该物种在该站位的分布密度为 295.00 ind./m²。分布密度在 200 ind./m²以上的站位为 ZS2、ZS4、ZS6、ZS8,其它站位的分布密度均在 $10.00\sim193.33$ ind./m²之间。

本次调查海域的底栖生物的生物量平面分布也不均匀,变化范围从 0.705~17.33g/m²,其中站位 ZS1 的生物量最高,构成高生物量的原因在于节肢动物一扁平拟闭口蟹(*Paracleistostomadepressum*)在该站位大量出现,生物量为17.33g/m²。生物量最低的站位为 ZS9 站位,仅为 0.705g/m²,该站位生物量低的原因在于该站位记录到个体较小的环节动物、刺胞动物和软体动物,个体较大的其它动物类群没有出现。

环节动物在 12 个站位中有 9 个站位出现,平均密度为 28.89 $ind./m^2$ 。密度分布范围为 $0\sim113.34ind./m^2$;平均生物量为 $0.504g/m^2$,生物量分布范围为 $0.00\sim1.281g/m^2$ 。

节肢动物在 12 个站位中有 9 个站位出现,平均密度为 92.918 ind./m²。密度分布范围为 $0\sim300.00$ ind./m²;平均生物量为 2.929 g/m²,生物量分布范围为 $0.00\sim17.33$ g/m²。

软体动物在 12 个站位中有 6 个站位出现,平均密度为 5.417ind./m², 密度分布范围为 $0\sim20.00$ ind./m²。平均生物量为 0.502g/m², 生物量分布范围为 $0.00\sim$

$3.970 g/m^{2}$.

纽形动物在 12 个站位中有 4 个站位出现,平均密度为 3.195 ind./m²。密度分布范围为 $0\sim20$ ind./m²;平均生物量为 0.032 g/m²,生物量分布范围为 $0.00\sim0.175$ g/m²。

刺胞动物在 12 个站位中有 1 个站位出现,平均密度为 0.417ind./m²。密度分布范围为 $0\sim5$ ind./m²;平均生物量为 0.024g/m²,生物量分布范围为 $0.00\sim0.29$ g/m²。

脊索动物在 12 个站位中有 1 个站位出现,平均密度为 0.417ind./m²。密度分布范围为 $0\sim5$ ind./m²;平均生物量为 0.021g/m²,生物量分布范围为 $0.00\sim0.185$ g/m²。

(3) 底栖生物种类优势种和经济种类

大型底栖动物种类若按其优势度 $Y \ge 0.02$ 时即被认定为优势种,那么本次调查海区的底栖生物有 2 个优势种,是节肢动物的日本长尾虫和中华蜾蠃蜚,其优势度 0.064 和 0.093 (表 5.3.1-25)。中华蜾蠃蜚在 12 个站位中的 6 个站位出现,其平均栖息密度为 58.33 ind./m²,占调查海区底栖生物平均密度的 16.51%,为该调查海区的第一优势种。

优势种	类群	优势度	平均密度 (ind./m²)	占总生物栖息密 度的百分比(%)
日本长尾虫	节肢动物门	0.064	272.5	16.51%
中华蜾蠃蜚	节肢动物门	0.093	58.3	3.54%

表 5.3.1-25 底栖动物优势种及优势度

(4) 底栖生物物种多样性指数

调查海域的各定量采样站位大型底栖生物出现种数变化的范围在 2~10 种/站,平均 4.75 种/站。多样性指数 (*H'*)变化范围在 0.122~2.975 之间,平均值为 1.762 (表 5.3.1-26)。多样性指数最高出现在 ZS11 站位;最低则为 ZS2 站位,调查海域底栖生物多样性指数属中等水平。均匀度范围在 0.015~0.365 之间,平均为 0.216,反映物种分布不均匀。

表 5.3.1-26 各调查站位底栖生物出现种数与物种多样性指数

站位	出现的种类数	多样性指数 H	均匀度指数 J
WS16	5	2.236	0.274
ZS1	2	0.958	0.117
ZS2	2	0.122	0.015
ZS3	5	2.128	0.261
ZS4	2	0.537	0.066
ZS5	6	2.585	0.317
ZS6	4	1.473	0.181
ZS8	5	2.161	0.265
ZS9	5	2.252	0.276
ZS10	9	2.713	0.333
ZS11	10	2.975	0.365
ZS12	2	1.000	0.123
范围	2~10	0.122~2.975	0.015~0.365
平均值	4.750	1.762	0.216

5、潮间带生物

(1) 种类组成

本次调查共记录潮间带动物 15 种,其中节肢动物 7 种、软体动物 4 种、脊索动物 2 种、纽形动物和星虫动物各 11 种。节肢动物和软体动物分别占总种数的 46.67%和 26.67%。节肢动物是构成本次调查海区潮间带生物的主要类群。

C1、C2、C3 为泥质断面。

高潮区:生物群落组成以节肢动物为主及少量星虫动物、脊索动物和纽形动物。出现的节肢动物主要有秀丽长方蟹和褶痕相手蟹,均属于沙滩常见的节肢动物:

中潮区:生物群落主要由节肢动物为主及少量软体动物和脊索动物组成,并采集到大量节肢动物秀丽长方蟹和褶痕相手蟹等;

低潮区: 以节肢动物为主,与中潮带物种分布差异不大。

(2) 潮间带生物量及栖息密度

①生物量及栖息密度的组成

调查断面中, C1 断面的平均生物量为 15.343g/m², C2 断面的平均生物量为 22.285g/m², C3 断面的平均生物量为 35.551g/m²; 在栖息密度方面, C1 断面平均栖息密度为 14.22ind./m², C2 断面的平均栖息密度为 29.73ind./m², C3 断面的平均栖息密度为 32.26ind./m²。

在 C1 断面生物量的组成中,均为节肢动物,平均生物量为 15.343g/m²,占总生物量的 100%。C2 断面中,以星虫动物居首位,平均生物量 10.062g/m²,占总生物量的 45.15%;其次为节肢动物,其平均生物量 9.555g/m²,占总生物量的 42.88%;软体动物其平均生物量 2.454g/m²,占总生物量的 11.01%;纽形动物,其平均生物量 0.214g/m²,占总生物量的 0.96%。C3 断面中,以节肢动物居首位,平均生物量 31.161g/m²,占总生物量的 87.65%;其次为脊索动物,其平均生物量 3.212g/m²,占总生物量的 9.03%;纽形动物和软体动物生物量较低,共占总生物量的 3.31%(表 5.3.1-27)。

在栖息密度方面, C1 断面中,均为节肢动物,平均栖息密度为 14.22ind./m²,占总栖息密度的 100.00%。C2 断面中,以星虫动物居首位,平均栖息密度为 15.00ind./m²,占总栖息密度的 50.45%;其次为节肢动物,其平均栖息密度为 10.73ind./m²,占总栖息密度的 36.10%;纽形动物和软体动物的平均栖息密度为 2ind./m²,占总栖息密度的 6.73%。C3 断面中,以节肢动物居首位,平均栖息密度为 26.27ind./m²,占总栖息密度的 81.42%;脊索动物次之,其平均栖息密度为 2.67ind./m²,占总栖息密度的 8.26%;纽形动物,其平均栖息密度为 2ind./m²,占总栖息密度的 6.20%;软体动物生物量较低,其平均栖息密度为 1.33ind./m²,占总栖息密度的 4.12%(表 5.3.1-27)。

表 5.3.1-27 潮间带平均生物量及栖息密度的组成

断面	项目	合计	节肢动物 门	纽形动物 门	软体动物 门	星虫动物 门	脊索动物 门
	平均密度 (ind./m²)	14.22	14.22	0.00	0.00	0.00	0.00
C1	平均生物 量 (g/m²)	15.343	15.343	0.000	0.000	0.000	0.000
G2	平均密度 (ind./m²)	29.73	10.73	2.00	2.00	15.00	0.00
C2	平均生物 量 (g/m²)	22.285	9.555	0.214	2.454	10.062	0.000
C2	平均密度 (ind./m²)	32.26	26.27	2.00	1.33	0.00	2.67
C3	平均生物 量 (g/m²)	35.551	31.161	0.090	1.088	0.000	3.212

②生物量及栖息密度的水平分布

调查断面的底栖生物生物量和栖息密度的水平分布方面, C2 的栖息密度最

高,栖息密度为 141.34ind./m², C3 的生物量最高,其生物量为 163.407g/m², (表 5.3.1-28)

表 5.3.1-28 潮间带生物量及栖息密度的水平分布

断面	项目	总计	节肢动物 门	纽形动物 门	软体动物 门	星虫动物 门	脊索动物 门
C1	密度 (ind./m²)	85.34	85.34	0.00	0.00	0.00	0.00
CI	生物量 (g/m²)	92.059	92.059	0.000	0.000	0.000	0.000
C2	密度 (ind./m²)	141.34	107.34	2.00	2.00	30.00	0.00
C2	生物量 (g/m²)	118.344	95.552	0.214	2.454	20.124	0.000
C3	密度 (ind./m²)	139.99	131.33	2.00	1.33	0.00	5.33
	生物量 (g/m²)	163.407	155.806	0.09	1.088	0.000	6.423

③生物量及栖息密度的垂直分布

在垂直分布上,结果显示: C1 断面中,潮间带生物的生物量表现为高潮区>中潮区>低潮区,栖息密度的垂直分布则表现为高潮区>中潮区>低潮区; C2 断面中,潮间带生物的生物量表现为中潮区>低潮区>高潮区,栖息密度的垂直分布则表现为中潮区>低潮区>高潮区; C3 断面中,潮间带生物的生物量表现为中潮区>高潮区>低潮区>高潮区; M面中,潮间带生物的生物量表现为中潮区>高潮区>低潮区,栖息密度的垂直分布则表现为低潮区=高潮区>中潮区(表 5.3.1-29)。

表 5.3.1-29 潮间带生物量及栖息密度的垂直分布

断	项目	合计	节肢动物	纽形动物	软体动物	星虫动物	脊索动物		
面		百月	门	门	门	门	门		
	C1								
低	密度 (ind./m²)	18.00	18.00	0.00	0.00	0.00	0.00		
115	生物量 (g/m²)	20.062	20.062	0.000	0.000	0.000	0.000		
中	密度 (ind./m²)	33.34	33.34	0.00	0.00	0.00	0.00		
†	生物量 (g/m²)	34.435	34.435	0.000	0.000	0.000	0.000		
高	密度	34.00	34.00	0.00	0.00	0.00	0.00		

断一	项目	合计	节肢动物	纽形动物	软体动物	星虫动物	脊索动物
面			门	门	门	门	门
	(ind./m ²)						
	生物量	37.562	37.562	0.000	0.000	0.000	0.000
	(g/m ²)						
C2							
	密度	50.00	38.00	2.00	2.00	8.00	0.00
低	(ind./m ²)	30.00	30.00	2.00	2.00	0.00	0.00
IKV	生物量	34.126	25.500	0.214	2.454	5.958	0.000
	(g/m²)	31.120	25.500	0.211	2.131	3.730	0.000
	密度	53.34	53.34	0.00	0.00	0.00	0.00
中	(ind./m ²)	33.31		0.00	0.00	0.00	0.00
'	生物量	52.782	52.782	0.000	0.000	0.000	0.000
	(g/m²)	32.762	32.762	0.000	0.000	0.000	0.000
	密度	38.00	16.00	0.00	0.00	22.00	0.00
高	(ind./m ²)	36.00	10.00	0.00	0.00	22.00	0.00
IFI	生物量	31.436	17.270	0.000	0.000	14.166	0.000
	(g/m^2)	31.430	17.270	0.000	0.000	14.100	0.000
				С3			
	密度	48.00	48.00	0.00	0.00	0.00	0.00
低	(ind./m ²)	70.00	70.00	0.00	0.00	0.00	0.00
IKV	生物量	43.636	43.636	0.000	0.000	0.000	0.000
	(g/m^2)	75.050	T3.030	0.000	0.000	0.000	0.000
	密度	43.99	41.33	0.00	1.33	0.00	1.33
中	(ind./m ²)	73.77	T1.JJ	0.00	1.55	0.00	1.33
· L	生物量	72.755	69.936	0.000	1.088	0.000	1.731
	(g/m²)	12.133	09.730	0.000	1.000	0.000	1./31
	密度	48.00	42.00	2.00	0.00	0.00	4.00
高	(ind./m ²)	40.00	42.00	2.00	0.00	0.00	4.00
问	生物量	47.016	42.234	0.090	0.000	0.000	4.692
	(g/m^2)	4/.010	42.234	0.090	0.000	0.000	4.092

(3) 潮间带生物多样性指数

计算结果显示,调查断面潮间带多样性指数(H'属中高水平),均匀度(J)属于低等水平,3 条断面多样性指数平均为 1.321,均匀度指数平均为 0.338(表 5.3.1-30)。

表 5.3.1-30 调查海区潮间带生物多样性指数及均匀度

断面名称	样方内出现的种类数	多样性指数 H	均匀度J
C1	3	1.116	0.286
C2	8	2.099	0.537
С3	5	0.747	0.191

5.3.1.8 渔业资源调查结果

项目组于2024年3月在项目所在海域分别布设了12个鱼卵仔稚鱼调查站位。 样品的采集和分析均按《海洋监测规范》(GB17378-2007)和《海洋调查规范》 (GB/T12763-2007)中规定的方法进行。

1、鱼卵仔鱼

(1) 种类组成

在采集的 12 个样品中,经鉴定,共出现了鱼卵仔鱼 7 种,其中鲈形目鉴定出 3 科 3 种(表 5.3.1-31)。

鱼卵的种类仅记录鳓属(Ilishasp.)、小沙丁鱼属(Sardinellasp.)、鲷科(Sparidae)。在出现鱼卵和仔鱼种类中,鱼卵的种类略多于仔鱼。

	种类	拉文种名	鱼卵	仔鱼
鲈形目	鳓属	Ilishasp.	+	
鲈形目	小沙丁鱼属	Sardinellasp.	+	+
鲈形目	鲷科	Sparidae	+	+

表 5.3.1-31 调查海区鱼卵、仔鱼种类组成

(2) 数量分布

本次调查共采到鱼卵 2 个,未采到仔鱼。调查海区的鱼卵平均密度为 1.35 粒/m³。采获鱼卵数量密度最高为 T1 调查站位,为 2.70ind/m³,调查期间 12 个点位仅 1 个采到鱼卵,鱼卵出现率为 8.33%。鱼卵密度为 2.70ind/m³(表 5.3.1-32)。

站位	鱼卵	仔稚鱼
T1	2.70	0

表 5.3.1-32 鱼类浮游生物密度及其分布

(3) 主要种类及数量分布

T1 调查站位仅舌鳎科、鲷科鱼卵,未采集到仔鱼。鲷科为我国沿海重要经济鱼类,属于高级的食用鱼类,具高经济及商业价值,部分种类更是为驯化为养殖鱼类。

2、游泳生物

(1) 种类组成

本次调查共捕获游泳生物 38 种,其中鱼类 31 种,甲壳类 7 种(表 5.3.1-33)。 本次调查,各站位出现种类情况见表 5.3.1-33。T1、T2 站位种类数相近,种 类数为 18、19 种。

表 5.3.1-33 各站位出现种类统计结果

2田 木 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		鱼类		甲壳类
调查站位	种类数	比例 (%)	种类数	比例 (%)
T1	16	88.89%	2	11.11%
T2	16	84.21%	3	15.79%
ZS1	4	100.00%	0	0.00%
ZS2	1	25.00%	3	75.00%
ZS4	2	66.67%	1	13.33%
ZS5	4	80.00%	1	20.00%
ZS6	3	75.00%	1	25.00%
ZS8	4	100.00%	0	0.00%
ZS9	3	100.00%	0	0.00%
ZS11	4	100.00%	0	0.00%
ZS12	4	100.00%	0	0.00%
WS16	5	100.00%	0	0.00%

(2) 渔获率

总重量渔获率分别为 3.2543kg, 其中鱼类重量渔获率为 3.1562kg, 分别占总重量渔获率和总个体渔获率的 96.98%; 甲壳类重量渔获率为 0.0981kg/h, 占总重量渔获率的 3.01%(表 5.3.1-34)

表 5.3.1-34 各站位重量渔获率 (kg/h) 及各类群百分比

油水光		鱼类		甲壳类	
调查站 位	总重量渔获率(kg)	重量渔获率 (kg)	百分比	重量渔获率 (kg)	百分比
T1	1.4345	1.4183	98.87%	0.0162	1.13%
T2	1.2005	1.1689	97.37%	0.0316	2.63%
ZS1	0.04224	0.04224	100.00%	0	0.00%
ZS2	0.06699	0.04321	64.50%	0.02378	35.50%
ZS4	0.05207	0.03536	67.92%	0.01670	32.08%
ZS5	0.10370	0.09981	96.25%	0.00389	3.75%
ZS6	0.04393	0.03799	86.49%	0.00593	13.51%
ZS8	0.05495	0.05495	100.00%	0	0.00%
ZS9	0.03991	0.03991	100.00%	0	0.00%
ZS11	0.06689	0.06689	100.00%	0	0.00%
ZS12	0.07157	0.07157	100.00%	0	0.00%
WS16	0.07705	0.07705	100.00%	0	0.00%
合计	3.2543	3.1562	96.98%	0.0981	3.01%

3、鱼类资源状况

(1) 种类组成

本次调查捕获的鱼类31种。鱼类中大多数种类为我国沿岸、浅海渔业的兼

捕对象。

(2) 优势种

鱼类 IRI 值在 500 以上的有 2 种,为佩氏莫鲻和缘边银鲈,其 IRI 指数列于表 5.3.1-35。

 种名
 N%
 W%
 F%
 IRI

 佩氏莫鲻
 18.766
 8.094
 20
 537.21

 缘边银鲈
 26.510
 28.198
 20
 1094.17

表 5.3.1-35 鱼类的 IRI 指数

(3) 主要经济鱼类的分布洄游及生物学特性

A 缘边银鲈 Gerres limbatus

体呈长卵圆形而略高,标准体长约为体高的 2.3-2.7 倍,体背于背鳍起点处极为弯曲,与水平方向轴约呈 40 度角。口小唇薄,能伸缩自如,伸出时向下垂。眼大,约为头长的 2.5-2.7 倍。上下颌齿细长,呈绒毛状;锄骨、腭骨及舌面皆无齿。体被薄圆鳞,易脱落;背鳍及臀鳍基底具鳞鞘;侧线完全,呈弧状,至尾鳍基底之侧线鳞数 33-35,尾鳍基底之有孔鳞 3;侧线上鳞列数 3(侧线至背鳍第 V 棘间,且不含侧线鳞)。背鳍单一,硬棘部 IX,第 III 棘最长,但短于头长;臀鳍第 II 棘粗状,但短于基底长;胸鳍短,末端仅及肛门;尾鳍叉形,最长鳍条长约为中央鳍条 2 倍。体呈银白色,背部较暗。体侧具有四条由背缘延伸至体中央的宽斑块。背鳍淡黄色,第 II 至第 VI 棘间鳍腹上半部具黑色斑驳;尾鳍淡黄色,具暗色缘;臀鳍淡橘色,後部稍暗;胸鳍淡黄,末缘淡色。以前之纪录--短棘钻嘴鱼(Gerres lucidus)为本种之同种异名。

地理分布:分布印度-西太平洋区,西起印度及斯里兰卡,东至中国南海及台湾海峡。台湾仅发现于澎湖海域。

生活习性: 主要掘食在沙泥地中躲藏的底栖生物。

4、甲壳类资源状况

(1) 种类组成

本次调查共捕获的甲壳类共7种。

(2) 优势种

甲壳类 IRI 值在 500 以上的有 3 种,分别为:粗糙沼虾、东方白虾、近缘新对虾,其甲壳类 IRI 指数列于表 5.3.1-36。

表 5.3.1-36 甲壳类的 IRI 指数

种名	N%	W%	F%	IRI
粗糙沼虾	23. 44	19. 44	20.00	857. 73
东方白虾	12. 74	19. 44	20.00	643.70
近缘新对虾	23. 07	30. 56	20.00	1072. 57

(3) 主要种类的分布及生物学特征

A.粗糙沼虾 Macrobrachiumasperulum

粗糙沼虾俗称:黑壳仔。头胸甲粗糙,额角短小,未达第二触角鳞片之末端,侧面有一显著纵走隆起线,上缘具有9~11个额齿,其中有2齿位于眼窝后缘之头胸甲上,而下缘则有2或3齿。第二胸脚极发达,呈圆筒状,各小节遍生小颗粒。长节前端部分超过第二触角鳞片;腕节短於掌部。动指与不动指切缘各有2小齿。本种在世界上之分布以中国南部各省及台湾为主要分布地,而西伯利亚东南部亦曾发现

B.东方白虾 Exopalaemonorientis

体形和额角与脊尾白虾相似,但其腹部各节背面圆滑无纵脊。第2步足腕节 比掌部长得多。中国东南各省及日本、朝鲜沿海常见。但产量不大。

C.C.近缘新对虾 Metapenaeus affinis

近缘新对虾是对虾科动物,虾体淡棕色,额角上缘 6~9 齿,下缘无齿。无中央沟,第一触角上鞭约为头胸甲长的 1/2,腹部第 1~6 节背面具纵脊,尾节无侧刺。第一对步足具座节刺,末对步足不具外肢。近缘新对虾的形态特征与刀额新对虾相似,不同的是其腹部游泳肢鲜红色。雄性交接器为"Y"形,雌性交接器为"c"形,中央板呈台状。主要分布于日本东海岸,我国东海与南海,菲律宾、马来西亚、印尼及澳大利亚一带。我国沿海 5~8 月为产卵盛期

5.3.2 秋季海洋现状调查

5.3.2.1 海洋现状调查概况

(1) 调查站位

春季调查共在东海岛西部海域设 20 个水质调查站位、12 个生态、沉积物调查站位,3 条潮间带调查断面,4 条拖网断面。

调查站位布置图详见图5.3.2-1,调查站位及内容位置详见表5.3.2-1和表5.3.2-2。

表5.3.2-1项目调查站位及内容

站位编号	经度	纬度	调查内容
WS4	110.2868986	21.07080502	
WS7	110.2824461	21.04123821	
WS8	110.2939796	21.02999266	
WS11	110.2543688	21.0232229	水质
WS12	110.2474809	20.99624093	小灰
WS13	110.2249932	20.98739111	
WS14	110.245024	20.98216711	
WS17	110.207634	20.99626097	
ZS1	110.2935934	21.10059618	
ZS2	110.2602509	21.08377557	
ZS3	110.3060925	21.05615752	
ZS4	110.2728224	21.01499061	
ZS5	110.1933002	21.04012671	
ZS6	110.2309477	21.02201112	水质、生态、沉积
ZS7	110.2368593	21.00255118	物站位
ZS8	110.1915193	21.01538621	
ZS9	110.28162	20.91815207	
ZS10	110.2185076	20.84615886	
ZS11	110.20051	21.1094643	
ZS12	110.1361075	21.15066258	

表5.3.2-2潮间带及拖网起始点位明细表

路线	经度	纬度
	潮间带	
C1	110.268445	21.07599087
C1	110.268681	21.07472947
C2	110.1944871	21.02306642
C2	110.1948828	21.02323291
C3	110.2057886	20.84799871
C3	110.2050805	20.84891111
	拖网	
T1	110.13677	21.1463624
T1	110.1440334	21.13734638
T2	110.2198219	21.00142938
T2	110.2368164	21.01320789
Т3	110.2272892	20.87597477
Т3	110.2868557	20.87308768
T4	110.2897739	21.07809319
T4	110.281105	21.06323616

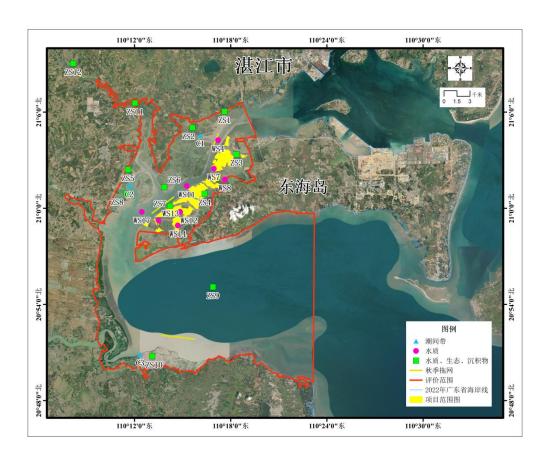


图 5.3.2-1 秋季采样点位分布图

5.3.2.2 调查内容与评价方法

1、海水环境现状调查

(1)调查内容

水质调查项目为:水温、透明度、pH值、盐度、悬浮物、化学需氧量、溶解氧、无机氮(氨氮、亚硝酸盐、硝酸盐)、活性磷酸盐、硫化物、挥发性酚、粪大肠杆菌、石油类、重金属(汞、砷、锌、铜、铅、镉、铬)。

(2) 调查方法

现场监测采样按《海洋监测规范》(GB17378.5-2007)进行,使用 GPS 导航船只进入预定点位,测量水深和进行透明度观测;采集水样根据水深确定层次:水深<10m 时采表层水样,10m〈水深<25m 时采表层和底层水样,水深>25m 时采表层、中层和底层水样。海水盐度、水深、水温、pH 均为现场测定。其它水环境因子均用容积为 5L 的有机玻璃采水器采样,按《海洋监测规范》(GB17378.5-2007)规定的方法进行样品采集、保存和实验室分析测试。各项目的分析方法及检出限见下表。

表 5.3.2-3 水质分析方法

检测项目	检测方法/依据	分析仪器	检出限
→L VIE	《海洋监测规范第4部分:海水分析》	JK-202-04	,
水温	GB17378.4-2007 表层水温表法 25.1	表层水温计	/
II 店	《海洋监测规范第4部分:海水分析》	PHB-4	,
pH 值	GB17378.4-2007pH 计法 26	pH 计	/
4k nh:	《海洋监测规范第4部分:海水分析》	HWYAD-1	
盐度	GB17378.4-2007 盐度计法 29.1	台式盐度仪	2
日本北	《海洋监测规范第4部分海水分析》	ESJ203-S	0.0 /7
悬浮物	GB17378.4-2007 重量法 27	电子天平	0.8mg/L
运 即序	《海洋监测规范第4部分:海水分析》	A PURE TO	,
透明度	GB17378.4-2007 透明圆盘法 22	透明圆盘	/
	《海洋监测规范第4部分:海水分析》	. 5. 5. 2. 2. 44.	
溶解氧	GB17378.4-2007 碘量法 31	碱式滴定管	0.16mg/L
 化学需氧	《海洋监测规范第4部分:海水分析》	. 5. 5. 2. 2. 44.	
量	GB17378.4-2007 碱性高锰酸钾法 32	碱式滴定管	0.32mg/L
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
亚硝酸盐	GB17378.4-2007 萘乙二胺分光光度法 37	见分光光度计	0.003mg/L
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
硝酸盐	GB17378.4-2007 镉柱还原法 38.1	见分光光度计	0.003mg/L
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
氨	GB17378.4-2007 次溴酸盐氧化法 36.2	见分光光度计	0.003mg/L
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
无机磷	GB17378.4-2007 磷钼蓝分光光度法 39.1	见分光光度计	0.003mg/L
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
硫化物	GB17378.4-2007 亚甲基蓝分光光度法 18.1	见分光光度计	$0.2 \mu g/L$
	《海洋监测规范第4部分:海水分析》	UV-8000 紫外可	
石油类	GB17378.4-2007 紫外分光光度法 13.2	见分光光度计	$3.5 \mu g/L$
	《海洋监测规范第4部分:海水分析》	AFS-8220	
汞	GB17378.4-2007 原子荧光法 5.1	原子荧光光度计	$0.007 \mu g/L$
	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	
铜	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	0.2μg/L
N.3	(连续测定铜、铅和镉) 6.1	计	0.2μg/L
	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	
铅	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	0.03µg/L
ИН	7.1	计	0.03μg/L
	《海洋监测规范第4部分:海水分析》	ice-3400 无火焰原	
镉	GB17378.4-2007 无火焰原子吸收分光光度法	子吸收分光光度	0.01µg/L
订判	8.1	计	υ.υτμα/Γ
		ice-3300 火焰原子	
锌	《海洋监测规范第4部分:海水分析》 GP17378 4 2007 火焰原子吸收分光光度法 0.1		$3.1 \mu g/L$
	GB17378.4-2007 火焰原子吸收分光光度法 9.1	吸收分光光度计	
铬	《海洋监测规范第4部分:海水分析》	ice-3300 火焰原子	$0.4 \mu g/L$
	GB17378.4-2007 无火焰原子吸收分光光度法	吸收分光光度计	

检测项目	检测方法/依据	分析仪器	检出限
	10.1		
砷	《海洋监测规范第4部分:海水分析》	AFS-8220	0.5ug/l
	GB17378.4-2007 原子荧光法 11.1	原子荧光光度计	
14. 44. 44. 44. 44. 44. 44. 44. 44. 44.	《海洋监测规范第7部分: 近海污染生态调查	UV-8000 紫外可	0.2~/I
叶绿素 a	和生物监测》GB17378.7-2007 分光光度法 8.2	见分光光度计	0.2μg/L

(3) 评价方法和标准

根据监测结果,利用《环境影响评价导则》(HJ/T2.3-93)所推荐的单项水质参数法进行评价。

单项水质参数i在j中占的标准指数。

$$S_{i,j}=C_{i,j}/C_{si}$$

式中: $S_{i,j}$: 评价因子 i 的水质指数;

 $C_{i,j}$: 评价因子 i 在 j 点的实测统计代表值,mg/L。

 C_{si} : 评价因子 i 的水质评价标准限值,mg/L。

DO 的标准指数为:

$$S_{DO,j} = \frac{\left|DO_{f} - DO_{j}\right|}{DO_{f} - DO_{s}}$$

$$DO_{j} > DO_{f}$$

$$S_{DO,j} = DO_{s}/DO_{j}$$

$$DO_{j} \leq DO_{f}$$

 $DO_f = (491-2.65S)/(33.5+T)$

式中: DOs-溶解氧的地表水质标准限值, mg/L;

DO_i一溶解氧在 i 点的实测统计代表值, mg/L;

DO_f一饱和溶解氧浓度, mg/L;

pH 的标准指数为:

$$S_{pH,j} = \frac{7.0 - pH_j}{7.0 - pH_{cd}}$$
 $pH_j \le 7.0$

$$S_{pH,j} = \frac{pH_j - 7.0}{pH_{su} - 7.0}$$
 $pH_j > 7.0$

其中:

式中: $S_{pH,---}$ pH 的指数;

pH;—pH 值实测统计代表值;

pH_{su}—pH 评价标准的上限值;

pHsd—pH评价标准的下限值;

水质参数的标准指数>1,表明该水质参数超过了规定的水质标准。

2、沉积物现状调查

(1) 调查项目

含水率、石油类、有机碳、硫化物、铅、铜、镉、汞、砷、铬、锌、粒度等。 (2) 采样方法

根据《海洋监测规范》(GB17378.3-2007)中的要求,进行沉积物样品的采集、保存与运输。到达指定站位后,将绞车的钢丝绳与 0.05m² 抓斗式采泥器连接,同时测量站位水深,开动绞车将采泥器下放至离海底 3m~5m 时,全速开动绞车使其降至海底。然后将采泥器提至接样板上,打开采泥器上部耳盖,轻轻倾斜使上部积水缓慢流出后,用塑料袋或勺从采泥器耳盖中仔细取上部 0cm~1cm 的沉积物。如遇砂砾层,可在 0cm~3cm 层内混合取样。现场记录底质类型,并分装与处理、保存。

(3)调查方法

样品的分析按照《海洋监测规范》(GB17378.5-2007)进行,各项目的分析方法如表 5.3.2-4。

表 5.3.2-4 样品分析方法一览表

检测项目	方法依据	仪器名称/型号	检出限
含水率	《海洋监测规范第5部分:沉积物分析》	电子天平(万分之	/
日水平	GB17378.5-2007 重量法(19)	一)PX224ZH	,
 石油类	《海洋监测规范第5部分: 沉积物分析》	紫外可见分光光度	3.0 (10-6)
4 個天	GB17378.5-2007 紫外分光光度法(13.2)	计 SP-1920	3.0 (10)
	《海洋监测规范第5部分: 沉积物分析》		
有机碳	(GB17378.5-2007)重铬酸钾氧化-还原容	/	/
	量法(18.1)		
	《海洋监测规范第5部分:沉积物分析》	华从可用公坐坐府	
硫化物	(GB17378.5-2007) 亚甲基蓝分光光度法	紫外可见分光光度 计 SP-1920	0.3 (10-6)
	(17.1)	V SP-1920	
	《海洋监测规范 第5部分:沉积物分析》	原子吸收分光光度	
铅	(GB17378.5-2007) 火焰原子吸收分光光	计 ICE3500	3.0 (10-6)
	度法(7.2)	VI ICESSOO	
	《海洋监测规范 第5部分:沉积物分析》	原子吸收分光光度	
铜	(GB17378.5-2007) 火焰原子吸收分光光	计 ICE3500	2.0 (10-6)
	度法(6.2)	VI ICESSOO	

镉	《海洋监测规范 第5部分:沉积物分析》 (GB17378.5-2007) 无火焰原子吸收分光 光度法(8.1)	原子吸收分光光度 计 ICE3500	0.04 (10-6)
汞	《海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 原子荧光法 (5.1)	原子荧光光度计 AFS-8520	0.002 (10-6)
砷	《海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 原子荧光法(11.1)	原子荧光光度计 AFS-8520	0.06 (10-6)
铬	海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 无火焰原子吸收分光 光度法(10.1)	/	2.0 (10-6)
锌	海洋监测规范第 5 部分: 沉积物分析》 (GB17378.5-2007) 火焰原子吸收分光光 度法 (9.1)	/	6.0 (10-6)
粒度	《海洋调查规范第 8 部分:海洋地质地球物理调查》(GB/T12763.8-2007)(6.3)	激光粒度分析仪 LS-POP(9)	/

(4) 分析方法

结合项目的特点和项目所属海域实际情况,以及附近海域的功能区划情况, 采用标准指数法, 对现状监测结果进行标准指数计算。

3、生物质量调查

(1) 调查项目

在渔获物中选取代表性海洋生物,分析其体内铜、铅、锌、镉、铬、总汞、砷、石油烃指标。

(2) 采样方法

①贝类样品的采集

用清洁刮刀从其附着物上采集贝类样品,选取足够数量的完好贝类存于高密度塑料袋中,压出袋内空气,将袋口打结或热封,将此袋和样品标签一起放入聚乙烯袋中并封口,存于冷冻箱中。

②虾与中小型鱼样采集

按要求选取足够数量的完好生物样,放入干净的聚乙烯袋中,应防止袋子被刺破。挤出袋内空气,将袋口打结或热封,将此袋和样品标签一起放入另一聚乙烯袋中,封口,于低温冰箱中贮存。若保存时间不太长(热天不超过48h),可用冰箱或冷冻箱贮放样品。

③大型鱼类采集

测量并记下鱼样的体长、体重和性别。用清洁的金属刀切下至少 100g 肌肉组织,厚度至少 5cm,样品处理时,切除玷污或内脏部分。存于清洁的聚乙烯袋中,挤出空气并封口,将此袋和样品标签一起放入另一聚乙烯袋中,封口,于低温冰箱中贮存。若保存时间不太长(热天不超过 48h),可用冰箱或冷冻箱贮放样品。

(3)调查方法

样品的预处理和分析方法遵照《海洋监测规范》(GB17378.6-2007)进行,各项目的分析方法如表 5.3.2-5。

检测项目	方法依据	仪器名称/型号	检出限
石油烃	《海洋监测规范第6部分:生物体分析》	/	0.2 (10-6)
41個年	(GB17378.6-2007) (13)	/	0.2 (10)
铬	《海洋监测技术规程第3部分:生物体》	/	0.30 (10-6)
指	(HY/T147.3-2013) (6)	/	0.30 (10*)
铜	《海洋监测技术规程第3部分:生物体》	/	0.08 (10-6)
기반	(HY/T147.3-2013) (6)	/	0.08 (10)
锌	《海洋监测技术规程第3部分:生物体》	/	1.66 (10-6)
T+	(HY/T147.3-2013) (6)	7	1.00 (10)
神	《海洋监测技术规程第3部分:生物体》	/	0.10 (10-6)
144	(HY/T147.3-2013) (6)	/	0.10 (10)
镉	《海洋监测技术规程第3部分:生物体》	/	0.03 (10-6)
刊	(HY/T147.3-2013) (6)	/	0.03 (10)
铅	《海洋监测技术规程第3部分:生物体》	/	0.03 (10-6)
111	(HY/T147.3-2013) (6)	/	0.05 (10°)
汞	《海洋监测规范第6部分:生物体分析》	/	0.002 (10-6)
水	(GB17378.6-2007) (5.1)	1	0.002 (10*)

表 5.3.2-5 样品分析方法一览表

(4) 分析方法

采用标准指数法,对现状监测结果进行标准指数计算。

4、海洋生物调查

(1)调查项目

叶绿素 a、初级生产力、浮游植物、浮游动物、底栖生物、潮间带生物。

(2) 采样方法

①叶绿素 a 和初级生产力:与水质采样相同,根据水深,用采水器采集表、底两层或者表、中、底三层水样,采样后量取一定体积(250mL)水样,经 GF/F 玻璃纤维滤膜过滤(过滤时抽气负压小于 50kPa)后,将滤膜对折,用铝箔包好,

存放于液氮罐中,带回实验室用萃取荧光法测定,分析其水体内叶绿素 a 含量的 平面分布及季节变化,计算初级生产力。

②浮游植物: 浮游植物定量分析样品用浅水III型浮游生物网自底至表层作垂直拖网进行采集。拖网时,落网速度为 0.5m/s,起网为 0.5m/s~0.8m/s。样品用缓冲甲醛溶液固定,加入量为样品体积的 5%。样品带回实验室经浓缩后镜检、观察、鉴定和计数。分析其种类组成、数量分布、主要优势种及其多样性分析。

③浮游动物:浮游动物样品用浅水 I 型浮游生物网从底层至表层垂直拖曳采集。采得的样品在现场用中性甲醛溶液固定,加入量为样品的 5%。在室内挑去杂物后以湿重法称取浮游动物的生物量,然后在体视显微镜下对标本进行鉴定和计数。分析其种类组成、数量分布、主要优势种及其多样性分析,并提供其种类名录。

④底栖生物:定量样品采用 0.05m² 采泥器,在每站位连续采集平行样品 5次,经孔径为 0.50mm 的筛网筛洗干净后,剩余物用体积分数为 5%-7%的中性甲醛溶液暂时性保存。定性样品采用框宽 1 米的阿氏拖网采集,在调查船航向稳定后投网,拖网绳应为水深 3 倍以上,以大约 2kn 的拖速拖行 15min。样品在实验室内进行计数、称重及种类鉴定,分析其种类组成、数量分布、主要优势种及其多样性分析,并提供其种类名录。

⑤潮间带生物: 在项目附近以及相关敏感目标附近设立不同底质类型(泥滩、沙滩和岩滩)的潮间带生物调查断面,在各断面潮间带的高、中、低潮区(分别采集定性样品和定量样品。定性样品在各断面周围随机采取;定量样品则用大小为25cm×25cm(或50cm×50cm)的取样框随机抛投,样框内所获底栖生物样品用5%左右的中性福尔马林溶液固定保存,带回实验室分析、鉴定、计数和称重。

(3) 调查方法

样品的分析采用《海洋调查规范》(GB/T12763-2007)进行,各项目的分析方法如表 5.3.2-6。

检测项目	检测方法	单 位	检出 限
浮游生物生态	《海洋监测规范第7部分:近海污染生态调查和生物监测》		,
调查	GB17378.7-2007 (5)	/	/

表 5.3.2-6 样品分析方法一览表

大型底栖生物	《海洋监测规范第7部分:近海污染生态调查和生物监测》	,	,
调查	GB17378.7-2007 (6)	/	/
潮间带生物生	《海洋监测规范第7部分:近海污染生态调查和生物监测》	,	,
态调查	GB17378.7-2007 (7)	_ ′	,

(4) 分析方法

各调查项目的采样和分析均按《海洋调查规范-海洋生物调查》(GB12763.6 -2007) 和《海洋监测规范》(GB17378-2007) 中规定的方法进行。

1)初级生产力

采用叶绿素 a 法,按照 Cadee 和 Hegeman(1974)提出的简化公式估算:

$$P = C_{\rm a}QLt/2$$

式中: P: 初级生产力 (mg·C/m²·d);

 C_a : 表层叶绿素 a 含量(mg/m^3);

Q: 同化系数 (mg·C/(mgChl-a·h));

L: 真光层的深度(m):

t: 白昼时间(h), 11h。

2) 优势度

优势度(Y)应用以下公式计算:

$$Y = \frac{\mathbf{n}_i}{N} f_i$$

式中: n_i为第 i 种的个体数; f_i是该种在各站中出现的频率; N 为所有站每个种出现的总个体数。

3) 多样性指数

Shannon-Wiener 指数计算公式为:

$$H' = -\sum_{i=1}^{s} P_i \log_2 P_i$$

式中: H' —种类多样性指数,S—样品中的种类总数, P_i —第 i 种的个体数与总个体数的比值。

4)均匀度

Pielou 均匀度公式为:

$$J = H' / log_2 S$$

式中: J—均匀度,H' —种类多样性指数,S—样品中的种类总数。

5) 游泳生物评估资源密度和确定优势种的方法

评估资源密度的方法:资源数量的评估根据底拖网扫海面积法(密度指数法),来估算评价区的资源重量密度和生物个体密度,求算公式为

$$S = (y)/a(1-E)$$

其中: S-重量密度(kg/km²)或个体密度(ind/km²)

a-底拖网每小时的扫海面积(每小时的扫海面积为0.0084km²)

y-平均渔获率(kg/h)或平均生物个体密度(ind/h)

E-逃逸率(取 0.5)

确定优势种的方法:根据渔获物中个体大小悬殊的特点,选用 Pinkas 等提出的相对重要性指数 IRI,来分析渔获物在群体数量组成中其生态的地位,依此确定优势种。IRI 计算公式为:

$$IRI = (N + W) F$$

式中: N-某一种类的尾数占渔获总尾数的百分比

W一某一种类的重量占渔获总重量的百分比

F-某一种类的出现的断面数占调查总断面数的百分比

- 5、渔业资源调查
- (1) 调查项目

包括鱼卵和仔稚鱼、游泳动物(鱼、虾、蟹、头足类)调查。

- (2)调查方法
- ①鱼卵与仔稚鱼:调查选择适于在调查海区作业且设备条件良好的渔船承担,按照 GB/T12763.6-2007 的相关规定进行样品的采集、保存和运输。网具使用浅水I型浮游生物网垂直采样,并配置网口流量计,角弧形量角器、沉锤等设备,由海底至海面垂直拖网。落网速度为 0.5m/s,起网速度为 0.5m/s~0.8m/s。

②游泳动物

游泳生物调查按照 GB/T12763.6-2007 的相关规定进行样品的采集、保存和运输。

A 调查船舶要求:游泳生物调查船应由专业调查船承担,或选择适于在调查海区作业且设备条件良好的渔船承担,调查船舶应具备能在调查海区中定位的卫

星定位仪、能在调查海区与陆地基地联络的通讯设备,性能良好的探鱼仪和雷达, 能随时观察曳网情况的网位仪,与调查水深和调查网具相匹配的起网机和起吊设 备,具备渔获物样品冷藏库或冷冻库。

B调查工作流程:采用单船有翼单囊拖网进行作业。调查网具网身长 7.5m,网口目大 45mm,网囊目大 25mm,上纲长 6.0m,每次放网 2 张,每一张网配备两个网板。调查时间选择在白天进行,综合拖速、拖向、流向、流速、风向和风速等多种因素,在距离站位位置 2nmile~4nmile 处放网,拖速控制在 3kn~4kn左右,经 1 小时后正好到达站位位置或附近。临放网前准确测定船位,放网时间以停止曳纲投放,曳纲着底开始受力时为准。拖网中尽量保持拖网方向朝向拖网站位,注意周围船只动态和调查船的拖网是否正常等,若出现不正常拖网时,视其情况改变拖向或立即起网。临起网前准确记录船位,起网时间以起网机开始卷收曳纲时间为准。如遇严重破网等导致渔获量大量减少时,应重新拖网。

C样品处理:将囊网里全部渔获物收集,记录估计的网次总质量(kg)。渔获物总质量在 40kg 以下时,全部取样分析;渔获物大于 40kg 时,从中挑出大型的和稀有的标本后,从渔获物中随机取出渔获物分析样品 20kg 左右,然后把余下的渔获物按品种和不同规格装箱,记录该站位准确渔获物总质量(kg)。

(3) 分析方法

鱼卵与仔稚鱼及游泳动物样品的分析采用《海洋调查规范》 (GB/T12763-2007)进行,各项目的分析方法如表 5.3.2-7。

检测项目	检测方法	单位	检出限	
鱼类浮游生物调查	《海洋调查规范第6部分:海洋生物调查》	,	/	
世关仔奶生初 炯旦	GB/T12763.6-2007 (9)	,	,	
游泳动物调查	《海洋调查规范第6部分:海洋生物调查》	,	/	
<i>断你初</i> 彻啊囯	GB/T12763.6-2007 (14)	/	/	

表 5.3.2-7 样品分析方法一览表

5.3.2.3 评价标准

根据《广东省海洋功能区划(2011—2020 年)》(2012 年),项目调查站位所在的海洋功能区为通明海海洋保护区、雷州湾农渔业区,项目调查站位功能区如图 5.3.2-2 所示。



图 5.3.2-2 秋季项目调查站位功能区图

1、海水水质质量现状评价标准

由项目调查站位海洋功能区分布图可知,项目海水水质执行标准要求如表 5.3.2-8,执行标准参照《海水水质标准》(GB3097-1997)。

表 5.3.2-8 调查范围水质执行标准

	功能区名称	调查站位	海水水质标准要求				
海洋保护区	通明海海洋保护区	WS4、WS7、WS8、 WS11、WS12 WS13、WS14、WS17、 ZS1、ZS2、ZS3、ZS4、 ZS5、ZS6、ZS7、ZS8、 ZS11	执行海水水质 二类标准				
农渔业区	雷州湾农渔业区	ZS9、ZS10					

ZS12 不在广东省海洋功能区划功能区内,从严执行本次调查海域海水水质标准,故执行海水水质二类标准

2、沉积物环境质量现状评价方法

由项目调查站位所在海洋功能区图可知,项目海洋沉积物执行标准要求如表

5.3.2-9, 执行标准参照《海洋沉积物质量》(GB18668-2002)。

表 5.3.2-9 调查范围海洋沉积物执行标准

功能区	功能区名称	调查站位	海洋沉积物质量标准 要求									
海洋保护区	通明海海洋保护区	ZS1、ZS2、ZS3、ZS4、 ZS5、ZS6、ZS7、ZS8、 ZS11	执行海洋沉积物质 量一类标准									
农渔业区	雷州湾农渔业区	ZS9、ZS10										
ZS12 不在广东	ZS12 不在广东省海洋功能区划功能区内,从严执行海洋沉积物质量一类标准											

3、海洋生物环境质量

由项目调查站位所在海洋功能区图可知,项目海洋生物中贝类质量标准参照《海洋生物质量》(GB18421-2001)中一类标准,其他鱼类、甲壳类、软体类等海洋生物质量评价标准采用《全国海岸带和海涂资源综合调查简明规程》中的标准。海岸带生物调查标准中无石油烃限量规定,参考采用《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

5.3.2.4 海水水质调查结果与评价

海水水质调查结果见表 5.3.2-10。

表5.3.2-10海水水质现状监测结果

检测项目	透明度	水温	溶解氧	pH 值	盐度	油类	COD	铬	锌	铜	铅	镉	砷	汞	活性磷 酸盐	无机 氮	硝酸盐	亚硝酸盐	铵盐	悬浮物	硫化物	挥发酚	粪大肠菌群	BOD
単位	m	$^{\circ}$	mg/L	无量纲	‰	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μmol/dm³	mg/L	μmol/dm ³	μmol/dm³	μmol/dm³	mg/L	mg/L	mg/L	个/L	mg/L
WS4	0.5	24.4	6.37	7.81	10.7	0.0079	2.8	0.58	6.35	2.15	0.22	ND	2.71	ND	1.31	1.2	63.7	13.1	8.63	18	ND	0.0014	1.7×10 ²	0.71
WS7	0.5	24	6.07	7.69	11.6	0.0314	2.17	0.97	8.26	2.4	0.649	ND	1.36	0.0104	1.13	0.0416	2.02	0.21	0.74	33	ND	0.0039	<20	5.14
WS8	0.3	21.8	6.52	8.02	9.5	0.0125	2.55	0.49	9.51	1.86	0.205	ND	0.506	0.00785	0.73	0.0393	1.96	0.22	0.63	15	0.004	ND	2.3×10 ²	5.15
WS11	0.6	24.5	6.34	7.89	10.4	0.0104	3.35	1.73	7.53	1.78	0.176	ND	1.17	ND	1.4	1.14	62	11.7	7.77	17	ND	0.0034	1.1×10 ²	0.59
WS12	0.4	21.3	6.75	8.05	11	0.0064	2.06	1.17	11.7	3.02	0.811	ND	1.5	0.00818	0.3	0.395	23.6	4.64	ND	13	ND	ND	2.3×10 ²	1.63
WS13	0.5	22.1	6.56	7.94	11.3	ND	1.89	0.92	8.19	1.78	0.366	ND	1.25	ND	0.79	1.08	63.1	10.1	3.63	14	ND	ND	3.3×10 ²	0.58
WS14	0.3	20.7	6.37	8.03	8.8	0.009	3.57	1.01	16.5	2.54	0.562	ND	0.622	0.0073	0.53	0.0314	1.34	0.08	0.82	14	ND	ND	1.3×10 ²	3.74
WS17	0.5	24.1	6.61	7.87	10.8	ND	1.9	0.64	6.41	1.64	0.391	ND	1.26	ND	1.69	1.33	80.4	11.5	3.37	13	ND	0.0022	40	0.62
ZS1	0.6	22.8	6.55	7.96	7.4	0.0071	2.28	2.13	15.1	4.4	0.664	ND	1.23	0.00818	1.62	1.45	54.6	4.71	44.2	9	0.003	ND	1.4×10 ²	0.95
ZS2	0.4	22.4	6.08	8.07	8.4	ND	2.43	0.52	14.9	1.57	0.542	ND	0.765	0.011	0.63	0.277	12.1	1.85	5.84	12	ND	ND	1.7×10 ²	1.07
ZS3	0.4	22	6.2	8.03	9.4	0.0171	3.66	2.1	13.3	2.48	0.449	ND	0.615	0.011	0.93	0.0448	1.76	0.14	1.3	16	0.003	ND	3.3×10 ²	3.67
ZS4	0.4	19.8	6.26	7.93	9.8	0.0222	4.57	1.58	7.96	1.68	0.53	ND	0.678	0.0141	0.65	0.0263	1.38	0.11	0.39	23	ND	ND	50	4.03
ZS5	0.4	25	6.6	8.02	10.5	0.0124	4.22	0.57	13.7	1.36	0.268	ND	0.716	0.00818	0.31	0.577	13.3	4.21	23.7	14	0.003	ND	<20	3.92
ZS6	0.5	24.3	6.14	7.64	11.6	0.01	2.63	0.91	9.44	1.98	0.327	ND	0.927	0.00959	0.63	0.584	33.7	6.06	1.97	12	0.003	ND	80	1.59
ZS7	0.4	24.2	6.41	7.76	10.4	ND	2.34	0.8	11.6	2.58	0.229	ND	1.38	ND	1.37	1.13	67.8	11.7	0.87	14	ND	0.0044	20	0.44
ZS8	0.5	25.2	6.61	8.02	10	0.0158	2.39	0.92	11	2.81	0.327	ND	1.05	ND	0.71	1.45	77.8	11	14.7	15	ND	ND	2.3×10 ²	1.12
ZS9	0.7	24.3	6.87	7.93	15.7	ND	1.63	0.67	10.4	1.76	0.171	0.0329	1.61	0.0116	1.54	0.641	40.5	4.17	1.09	16	ND	ND	50	0.58
ZS10	0.3	22.3	6.37	7.83	9.5	0.0068	2.93	1.43	10.3	3.37	1.15	0.036	1.48	0.00719	1.72	0.0182	0.72	0.18	0.4	12	ND	ND	3.3×10 ²	1.31
ZS11	0.3	24.5	6.49	7.94	1.7	0.0104	2.5	0.89	11.4	2.82	0.488	ND	0.696	ND	1.31	3.49	223	8.83	17.7	11	ND	ND	3.5×10 ³	1
ZS12	0.4	24	6.81	7.93	0.1	0.0134	2.4	1.32	11.7	3.12	0.635	ND	ND	ND	1.77	5.44	360	8.72	19.7	12	ND	0.0011	1.6×10 ⁴	1.62

1、区域整体水质状况

2023年11月东海岛西部海域海水环境状况总体较好,除pH值、化学需氧量、生化需氧量、活性磷酸盐、无机氮、粪大肠菌群部分站位不达标外,其他监测因子硫化物、油类、挥发酚、汞、砷、锌、铜、铅、镉、铬均符合《海水水质标准》第二类标准。

在整个调查区域中,符合二类海水水质标准的调查站位站整个调查占位的 10%,超过第二类海水水质的调查站位站整个调查占位的 90%。调查海域活性磷酸盐浓度超标率高达 90%,大大增加了该海域超二类海水水质的面积占比。

2、区域各水质监测指标状况

(1) 水温

调查海域水温介于 19.8~25.2℃之间, 平均值为 23.2℃。

(2) pH 值

调查海域 pH 介于 7.64~8.07 之间,平均值为 7.92。符合二类海水水质标准的调查站位站整个调查占位的 85.00%,超过二类海水水质标准的调查站位站整个调查占位的 15.00%。调查海域的 pH 质量状况良好。

(3) 盐度

调查海域盐度介于 0.1%~15.7%之间, 平均值为 9.43%。

(4) 透明度

调查海域透明度介于 $0.3\sim0.7$ m 之间, 平均值为 0.44m。

(5) 溶解氧

调查海域溶解氧含量介于 6.07mg/L~6.87mg/L 之间,平均值为 6.45mg/L。各调查站位溶解氧均符合第二类海水水质标准,海水中的溶解氧质量状况好。

(6) 油类

调查海域石油类含量介于 NDmg/L~0.0314mg/L 之间,平均值为 0.0096mg/L。各调查站位均符合第二类海水水质标准,海水中的石油类质量状况较好。

(7) 生化需氧量

调查海域生化需氧量含量介于 0.44~5.15mg/L 之间,平均值为 1.97mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 75.00%,超过第二类海水水质标准的调查站位占总调查站位数的 25.00%。海水中生化需氧量整体质量状况良好。

(8) 化学需氧量

调查海域化学需氧量含量介于 1.63mg/L~4.57mg/L 之间, 平均值为 2.71mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 70.00%,超过第二类海水水质标准的站位占总站位的 30.00%。海水中化学需氧量整体质量状况较好。

(9) 活性磷酸盐

调查海域活性磷酸盐含量介于 0.3μmol/dm³~1.77μmol/dm³之间,平均值为 1.05μmol/dm³。符合第二类海水水质标准的调查站位占总调查站位数的 10.00%,超过 第二类海水水质标准的调查站位占总调查站位数的 90.00%。海水中活性磷酸盐整体质量状况较差。

(10) 无机氮

调查海域无机氮含量介于 0.0182mg/L~5.44mg/L 之间, 平均值为 1.02mg/L。符合第二类海水水质标准的调查站位占总调查站位数的 35.00%, 超过第二类海水水质标准的调查站位齿总调查站位数的 65.00%。

(11) 硝酸盐氮

调查海域硝酸盐氮含量介于 $0.72\sim360\mu mol/dm^3$,平均值为 $59.24\mu mol/dm^3$ 。

(12) 亚硝酸盐

调查海域硝酸盐含量介于 $0.08\sim13.1\mu mol/dm^3$,平均值为 $5.66\mu mol/dm^3$ 。

(13) 氨氮

调查海域氨氮含量介于 $0.39\sim44.2\mu mol/dm^3$,平均值为 $8.29\mu mol/dm^3$ 。

(14) 悬浮物

调查海域悬浮物含量介于 9mg/L~33mg/L 之间, 平均值为 15.15mg/L。

(15) 硫化物

调查海域悬浮物含量介于 $ND\sim0.004$ mg/L 之间,平均值为 0.0008mg/L。

(16) 挥发性酚

调查海域挥发性酚含量介于 ND~0.0044mg/L 之间,平均值为 0.00082mg/L。各调查站位均符合第二类海水水质标准,调查海域海水中挥发性酚整体质量状况好。

(17) 粪大肠杆菌

调查海域粪大肠杆菌含量介于 20 个/L~16000 个/L 之间,平均值为 1109 个/L。 调查海域表层海水中粪大肠杆菌符合第二类海水水质标准的调查站位占总调查站位 数的 90.00%,超过二类海水水质标准的调查站位占总调查站位数的 10.00%。

(18) 汞

调查海域汞含量介于 ND~0.0141μg/L 之间,平均值为 0.00573μg/L。各调查站位均符合第二类海水水质标准。

(19) 砷

调查海域砷含量介于 ND~2.71μg/L 之间, 平均值为 1.08μg/L。各调查站位均符合第二类海水水质标准。

(20) 锌

调查海域锌含量介于 5.16~16.9μg/L 之间, 平均值为 10.97μg/L。各调查站位均符合第二类海水水质标准。

(21) 铜

调查海域铜含量介于 1.36~4.4μg/L 之间, 平均值为 2.36μg/L。各调查站位均符合 第二类海水水质标准。

(22) 铅

调查海域铅含量介于 0.171~1.15μg/L 之间,平均值为 0.45μg/L。各调查站位均符合第二类海水水质标准。

(23) 镉

调查海域镉含量介于 ND~0.036μg/L 之间,平均值为 0.0034μg/L。各调查站位均符合第二类海水水质标准。

(24) 辂

调查海域锌含量介于 0.49~2.13μg/L 之间,平均值为 1.07μg/L,各调查站位均符合第二类海水水质标准,调查海域海水中铬整体质量状况好。

3、功能区水质状况

采用上述单项指数法,对现状监测结果进行标准指数计算。由调查及评级结果可知,本次调查共布设 20 个调查站位,调查海域功能区水质达标情况如下:调查海域执行海水水质二类标准,水质整体超标率为 90%,主要超标因子为活性磷酸盐,其次为无机氮、化学需氧量、生化需氧量、pH 值及粪大肠菌群,其他因子全部符合海水水质二类标准。其中无机氮超标率为 65.00%,生化需氧量超标率为 30.00%,化学需氧量超标率为 25.00%,pH 值超标率为 15.00%,粪大肠菌群超标率为 10.00%。

表 5.3.2-11 海水水质质量指数

项目	溶解氧	pH 值	化学需氧 量	生化需氧量	活性磷酸盐	无机氮	硫化物	挥发酚	油类	粪大肠菌 群	汞	砷	锌	铜	铅	镉	铬
WS4	0.592	0.971	0.933	0.237	3.406	4	0.03	0.28	0.158	0.085	0.018	0.09	0.127	0.022	0.044	0.001	0.0058
WS7	0.687	1.314	0.723	1.713	2.938	0.139	0.03	0.78	0.628	0.005	0.052	0.045	0.165	0.024	0.13	0.001	0.0097
WS8	0.596	0.371	0.85	1.717	1.898	0.131	0.08	0.11	0.25	0.115	0.039	0.017	0.19	0.019	0.041	0.001	0.0049
WS11	0.599	0.743	1.117	0.197	3.64	3.8	0.03	0.68	0.208	0.055	0.018	0.039	0.151	0.018	0.035	0.001	0.0173
WS12	0.545	0.286	0.687	0.543	0.78	1.317	0.03	0.11	0.128	0.115	0.041	0.05	0.234	0.03	0.162	0.001	0.0117
WS13	0.58	0.6	0.63	0.193	2.054	3.6	0.03	0.11	0.035	0.165	0.018	0.042	0.164	0.018	0.073	0.001	0.0092
WS14	0.653	0.343	1.19	1.247	1.378	0.105	0.03	0.11	0.18	0.065	0.037	0.021	0.33	0.025	0.112	0.001	0.0101
WS17	0.527	0.8	0.633	0.207	4.394	4.433	0.03	0.44	0.035	0.02	0.018	0.042	0.128	0.016	0.078	0.001	0.0064
ZS1	0.57	0.543	0.76	0.317	4.212	4.833	0.06	0.11	0.142	0.07	0.041	0.041	0.302	0.044	0.133	0.001	0.0213
ZS2	0.705	0.229	0.81	0.357	1.638	0.923	0.03	0.11	0.035	0.085	0.055	0.026	0.298	0.016	0.108	0.001	0.0052
ZS3	0.678	0.343	1.22	1.223	2.418	0.149	0.06	0.11	0.342	0.165	0.055	0.021	0.266	0.025	0.09	0.001	0.021
ZS4	0.693	0.629	1.523	1.343	1.69	0.088	0.03	0.11	0.444	0.025	0.071	0.023	0.159	0.017	0.106	0.001	0.0158
ZS5	0.51	0.371	1.407	1.307	0.806	1.923	0.06	0.11	0.248	0.005	0.041	0.024	0.274	0.014	0.054	0.001	0.0057
ZS6	0.662	1.457	0.877	0.53	1.638	1.947	0.06	0.11	0.2	0.04	0.048	0.031	0.189	0.02	0.065	0.001	0.0091
ZS7	0.584	1.114	0.78	0.147	3.562	3.767	0.03	0.88	0.035	0.01	0.018	0.046	0.232	0.026	0.046	0.001	0.008
ZS8	0.503	0.371	0.797	0.373	1.846	4.833	0.03	0.11	0.316	0.115	0.018	0.035	0.22	0.028	0.065	0.001	0.0092
ZS9	0.445	0.629	0.543	0.193	4.004	2.137	0.03	0.11	0.035	0.025	0.058	0.054	0.208	0.018	0.034	0.007	0.0067
ZS10	0.628	0.914	0.977	0.437	4.472	0.061	0.03	0.11	0.136	0.165	0.036	0.049	0.206	0.034	0.23	0.007	0.0143
ZS11	0.554	0.6	0.833	0.333	3.406	11.633	0.03	0.11	0.208	1.75	0.018	0.023	0.228	0.028	0.098	0.001	0.0089
ZS12	0.47	0.629	0.8	0.54	4.602	18.133	0.03	0.22	0.268	8	0.018	0.008	0.234	0.031	0.127	0.001	0.0132
最小值	0.445	0.229	0.543	0.147	0.78	0.061	0.03	0.11	0.035	0.005	0.018	0.008	0.127	0.014	0.034	0.001	0.0049
最大值	0.705	1.457	1.523	1.717	4.602	18.133	0.08	0.88	0.628	8	0.071	0.09	0.33	0.044	0.23	0.007	0.0213
超标率	0.00%	15.00%	25.00%	30.00%	90.00%	65.00%	0.00%	0.00%	0.00%	10.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

5.3.2.5 海洋沉积物质量调查与评价

1、海洋沉积物调查结果 海洋沉积物调查结果见表 5.3.2-12。

表 5.3.2-12 海洋沉积物现状监测结果

松 测~蛋 口	単位		点位编号/检测结果													
检测项目	単 型	ZS1	ZS2	ZS3	ZS4	ZS5	ZS6	ZS7	ZS8	ZS9	ZS10	ZS11	ZS12			
含水率	%	25.7	70.1	26.1	41.7	48.6	42.8	59.1	56.4	25.6	49.1	55.6	22.5			
石油类	10-6	49.3	121	20.3	77	93.5	33.2	124	92.2	63.3	77.2	998	106			
有机碳	%	1.28	2.04	0.9	1.55	1.37	0.962	1.29	1.86	0.659	0.872	2.64	0.436			
硫化物	10-6	6.84	8.45	6.19	10.4	1.34×10 ³	11	22.7	15.5	4.68	23	29.3	2.75			
铬	10-6	45.8	80.9	49.4	72.2	56.2	49.8	75.8	86.1	44.9	69	93.8	62			
铜	10-6	8.82	19.3	10.4	14.7	13.1	8.48	16	18.8	8.82	14.7	28.3	6.42			
锌	10-6	50.2	97.4	80.1	80.2	60.3	58.9	89	110	55.6	88	111	34.5			
镉	10-6	0.038	0.048	0.034	0.072	0.11	0.06	0.076	0.088	0.05	0.05	0.135	0.063			
铅	10-6	19.8	33.7	24.9	36.6	21.4	23.3	35.4	37.8	25.8	27.7	34.8	11.5			
砷	10-6	9.28	17.9	9.92	14.1	8.91	7.56	9.4	14.8	6.87	9.92	11.9	5.47			
汞	10-6	0.032	0.061	0.032	0.054	0.039	0.033	0.057	0.049	0.033	0.036	0.11	0.028			

2、区域整体海洋沉积物质量状况

本次调查海域沉积物环境状况总体情况较好,整个调查区域除有机碳、砷在部分站位有超过一类海洋沉积物标准外,其他因子均符合第一类海洋沉积物标准,质量等级为优。

3、区域整体海洋沉积物监测指标状况

(1) 石油类

调查海域沉积物中石油类的含量介于 20.3×10⁻⁶~998×10⁻⁶之间,平均值 154.6×10⁻⁶。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 100%,沉积物中石油类的整体质量状况较好。

(2) 有机碳

调查海域沉积物中有机碳的含量介于 0.436%~2.64%之间, 平均值 1.32%。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 83.33%,超过第一类海洋沉积物质量标准的调查站位占总调查站位数的 16.67%。沉积物中有机碳的整体质量状况较好。

(3) 硫化物

调查海域沉积物中硫化物的含量介于 2.75×10⁻⁶~1340×10⁻⁶ 之间,平均值 123.4×10⁻⁶。符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 91.67%,超过第一类海洋沉积物质量标准的调查站位占总调查站位数的 8.33%。沉积物中硫化物的整体质量状况较好。

(4) 铬(Cr)

调查海域沉积物中铬的含量介于 44.9×10⁻⁶~93.8×10⁻⁶之间,平均值 65.5×10⁻⁶,符合第一类海洋沉积物质量标准的调查站位占总调查站位数的 75.00%,超过第一类海洋沉积物质量标准的调查站位占总调查站位数的 25.00%,沉积物中铬的质量状况较好。

(5) 锌(Zn)

调查海域沉积物中锌的含量介于 34.5×10⁻⁶~111×10⁻⁶之间,平均值 76.3×10⁻⁶,所有调查站位锌均符合第一类海洋沉积物质量标准,沉积物中锌的质量状况较好。

(6)镉(Cd)

调查海域沉积物中镉的含量介于 0.034×10⁻⁶~0.135×10⁻⁶之间, 平均值 0.069×10⁻⁶, 所有调查站位镉均符合第一类海洋沉积物质量标准, 沉积物中镉的质量状况较好。

(7) 铅(Pb)

调查海域沉积物中铅的含量介于 11.5×10⁻⁶~37.8×10⁻⁶之间,平均值 27.725×10⁻⁶, 所有调查站位铅均符合第一类海洋沉积物质量标准,沉积物中铅的质量状况较好。

(8) 砷 (As)

调查海域沉积物中砷的含量介于 5.47×10⁻⁶~17.9×10⁻⁶之间,平均值 10.5×10⁻⁶,所有调查站位铅均符合第一类海洋沉积物质量标准,沉积物中砷的质量状况较好。

(9) 汞 (Hg)

调查海域沉积物中汞的含量介于 0.028×10⁻⁶~0.11×10⁻⁶之间,平均值 0.047×10⁻⁶, 所有调查站位汞均符合第一类海洋沉积物质量标准,沉积物中汞的质量状况较好。

(10)铜(Cu)

调查海域沉积物中铜的含量介于 6.42×10⁻⁶~28.3×10⁻⁶之间, 平均值 13.99×10⁻⁶, 所有调查站位铜均符合第一类海洋沉积物质量标准, 沉积物中铜的质量状况较好。

4、海洋沉积物质量状况

采用上述单项指数法,对现状监测结果进行标准指数计算。调查海域属于通明海海洋保护区、雷州湾农渔业区,执行海洋沉积物质量第一类标准。由调查及评价结果可知,由于石油类、有机碳、硫化物和铬出现超标,调查区域沉积物环境一般。

表 5.3.2-13 海洋沉积物质量指数

检测	项目	石油类	有机碳	硫化物	铜	铅	镉	铬	锌	砷	汞
	ZS1	0.099	0.640	0.023	0.252	0.330	0.076	0.573	0.335	0.464	0.16
	ZS2	0.242	1.020	0.028	0.551	0.562	0.096	1.011	0.649	0.895	0.305
	ZS3	0.041	0.450	0.021	0.297	0.415	0.068	0.618	0.534	0.496	0.16
	ZS4	0.154	0.775	0.035	0.420	0.610	0.144	0.903	0.535	0.705	0.27
	ZS5	0.187	0.685	4.467	0.374	0.357	0.220	0.703	0.402	0.446	0.195
点位编	ZS6	0.066	0.481	0.037	0.242	0.388	0.120	0.623	0.393	0.378	0.165
号	ZS7	0.248	0.645	0.076	0.457	0.590	0.152	0.948	0.593	0.470	0.285
	ZS8	0.184	0.930	0.052	0.537	0.630	0.176	1.076	0.733	0.740	0.245
	ZS9	0.127	0.330	0.016	0.252	0.430	0.100	0.561	0.371	0.344	0.165
	ZS10	0.154	0.436	0.077	0.420	0.462	0.100	0.863	0.587	0.496	0.18
	ZS11	1.996	1.320	0.098	0.809	0.580	0.270	1.173	0.740	0.595	0.55
	ZS12	0.212	0.218	0.009	0.183	0.192	0.126	0.775	0.230	0.274	0.14
最	大值	1.996	1.320	4.467	0.809	0.630	0.270	1.173	0.740	0.895	0.55
最小	小值	0.041	0.218	0.009	0.183	0.192	0.068	0.561	0.230	0.274	0.14
超村	示率	8.33%	16.67%	8.33%	0.00%	0.00%	0.00%	25.00%	0.00%	0.00%	0.00%

5.3.2.6 海洋生物质量调查与评价

1、海洋生物调查结果

本次调查海洋生物体质量调查结果见表 5.3.2-14。

表 5.3.2-14 海洋生物质量调查结果

			检测结果							
站位	物种名称	类别	石油烃	铬	铜	锌	砷	镉	铅	总汞
T1	黑斑绯鲤	鱼类	26.5	0.035	0.88	22.2	7.62	0.0075	0.04	0.141
T2	丝鳍海鲶	鱼类	33.4	0.035	0.78	17.5	6.61	0.0075	0.04	0.806
Т3	须赤虾	甲壳类	23.7	0.33	29.5	77.4	41.2	0.08	0.23	0.087
T4	斯氏莫鲻	鱼类	28.8	0.035	1.08	13.4	4.55	0.0075	0.08	0.052

2、区域整体海洋生物质量状况

本次调查区域中 T1、T2、T4 环境监测生物均为鱼类,T3 环境监测生物为甲壳类。 鱼类及甲壳动物体内的铜、锌、镉含量超过《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求,其他因子铅、汞石油烃符合《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求。

3、区域海洋生物监测指标状况

(1) 石油烃

生物体中石油烃全部测值范围为 23.7~33.4mg/kg, 平均值为 10.9mg/kg, 由评价结果可知,调查站位的石油烃含量均超过符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物体质量标准。

(2) 铬

生物体中铬全部测值范围为 $0.035\sim0.33$ mg/kg, 平均值为 0.11mg/kg。

(3)铜

生物体中铜全部测值范围为 0.78~29.5mg/kg, 平均值为 8.06mg/kg, 由评价结果可知,铜含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(4) 锌

生物体中锌全部测值范围为 13.4~77.4mg/kg, 平均值为 32.6mg/kg, 由评价结果可知, 锌含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(5) 砷

生物体中砷全部测值范围为 4.55~41.2mg/kg, 平均值为 9.29mg/kg。

(6) 镉

生物体中镉全部测值范围为 3.46~4.83mg/kg, 平均值为 14.99mg/kg, 由评价结果可知, 镉含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(7) 铅

生物体中铅全部测值范围为 0.04~0.23mg/kg, 平均值为 0.098mg/kg, 由评价结果可知, 铅含量均符合《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准。

(8) 汞

生物体中汞全部测值范围为 0.052~0.806mg/kg, 平均值为 0.272mg/kg, 由评价结果可知,本次调查中有一个站位汞含量超过《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准,超标率为 25%。

4、各功能区海洋生物质量状况

采用上述单项指数法,对现状监测结果进行标准指数计算。调查海域功能区位于通明海海洋保护区、雷州湾农渔业区,执行海洋生物达标情况《海洋生物质量》(GB18421-2001)第一类标准,重金属及石油烃含量的评价标准采用《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的相应标准。调查区域共4个调查站位,海洋生物质量整体超标率为100%,调查站位均出现超标现象,超标因子主要为石油烃、汞。

站位	物种名	类别	检测结果							
441年	称	一	石油烃	铜	锌	镉	铅	总汞		
T1	黑斑绯鲤	鱼类	1.33	0.04	0.56	0.01	0.02	0.47		
T2	丝鳍海鲶	鱼类	1.67	0.04	0.44	0.01	0.02	2.69		
Т3	须赤虾	甲壳类	1.19	0.30	0.52	0.04	0.12	0.44		

表 5.3.2-15 海洋生物质量指数

T4	斯氏莫鲻	鱼类	1.44	0.05	0.34	0.01	0.04	0.17
	最大值		1.67	0.04	0.56	0.01	0.02	2.69
	最小值		1.33	0.04	0.44	0.01	0.02	0.47
	超标率		100.00%	0.00%	0.00%	0.00%	0.00%	25.00%

5.3.2.7 海洋生态调查结果

本次调查区域共布设了 12 个调查站位,分析内容主要包括叶绿素 a、初级生产力、浮游植物、浮游动物、底栖生物、潮间带生物、渔业资源(鱼卵仔稚鱼、游泳动物)。 样品的采集和分析均按《海洋监测规范》(GB17378-2007)和《海洋调查规范》 (GB/T12763-2007)中规定的方法进行。

1、叶绿素 a 和初级生产力

(1) 叶绿素 a

本次调查海区表层水体叶绿素 a 含量的变化范围为 1.53~23.4mg/L, 平均值为 8.52mg/L, 其中 ZS6 站位叶绿素 a 含量最高, ZS1 站位叶绿素 a 含量最低。各站位海水叶绿素 a 含量见表 3.4-1。

(2) 初级生产力

调查海域初级生产力的变化范围为 30.281~830.280mg·C/(m²·d), 平均值为 212.88mg·C/(m²·d), 其中 ZS3 站位初级生产力水平最高, WS16 站位最低。各站位 海水初级生产力水平见表 5.3.2-16。

表 5.3.2-16 叶绿素 a 和初级生产力测定结果

项目	叶绿素 a(mg/L)	初级生产力(mg·C/m²·d)
ZS1	1.53	43.590
ZS2	15.6	380.952
ZS3	23.4	571.428
ZS4	34	830.280
ZS5	3.34	81.563
ZS6	5.42	165.446
ZS7	1.24	30.281
ZS8	3	91.575
ZS9	2.61	111.538

项目	叶绿素 a(mg/L)	初级生产力(mg·C/m²·d)
ZS10	5.3	97.070
ZS11	2.33	42.674
ZS12	4.43	108.181
范围	1.53~23.4	30.281~830.280
平均值	8.52	212.88

2、浮游植物

(1) 种类组成和优势种

本次调查共记录浮游植物 4 门 30 属 54 种。其中以硅藻门出现的种类为最多,为 23 属 46 种,占总种数的 85.19%(表 3.4-2);甲藻门共出现 2 属 2 种,占总种数的 3.70%;蓝藻门共出现 4 属 5 种,占总种数的 9.26%;绿藻门共出现 1 属 1 种,占总种数的 1.85%。

表 5.3.2-17 浮游植物种类组成

类群	属数	种类数	种类组成比例(%)
硅藻	21	47	58.02%
甲藻	6	7	8.64%
蓝藻	9	14	17.28%
绿藻	6	12	14.81%
裸藻	1	1	1.23%
合计	43	81	100.00%

以优势度 Y 大于 0.02 为判断标准,本次调查的浮游植物优势种共出现 2 种,为链状假鱼腥藻(*Pseudanabaenacatenata*)、铜绿席藻(*Phormidiumaerugineo-coeruleum*)。这 2 种优势种的丰度占调查海区总丰度的 81.24%。铜绿席藻的优势度最高为 0.1127,占调查海区总丰度的 67.84%,为本次调查的第一优势种,其次是链状假鱼腥藻的优势度为 0.0668,占调查海区总丰度的 13.40%。

表 5.3.2-18 浮游植物优势种及优势度

种名	类群	优势度	占总丰度百分比
链状假鱼腥藻(Pseudanabaenacatenata)	蓝藻门	0.06680	13.40

铜绿席藻(Phormidiumaerugineo-coeruleum)	蓝藻门	0.11270	67.84
-------------------------------------	-----	---------	-------

(2) 丰富组成

调查海区浮游植物丰度变化范围为 $376.47\times10^3\sim150530\times10^3$ cells/m³, 平均为 17982.81×10^3 cells/m³ (表 5.3.2-19)。不同站位的丰度差异较大,最高丰度出现在 ZS4 站位,为 150530×10^3 cells/m³; 最低丰度则出现在 ZS6 站位,仅为 376.47×10^3 cells/m³。

浮游植物丰度组成以蓝藻、硅藻占优势,蓝藻丰度占各站总丰度的 0.00%~99.57%, 平均为 42.68%; 硅藻丰度占各站总丰度的 00.42%~94.92%, 平均为 42.77%, 蓝藻在 11 个监测站都有出现, 出现频率为 91.67%; 硅藻在 12 个监测站都有出现, 出现频率为 100.00%; 甲藻在各站丰度中的所占比例为 0.00%~76.69%, 平均为 12.03%; 绿藻在各站丰度中的所占比例为 0.00%~66.89%, 平均为 7.03%; 裸藻仅在 1 个站位出现, 丰度站该站位的 0.22%。

表 5.3.2-19 浮游植物丰度(×10³cells/m³)及其百分比值(%)

ملاءً عامد	光十 床	硅	·····································	甲	藻	蓝濱	Ę	绿	藻	袖	果藻
站位	总丰度	丰度	百分比	丰度	百分比	丰度	百分比	丰度	百分比	丰度	百分比
ZS1	570.00	365.00	64.04%	0.00	0.00%	140.00	24.56%	65.00	11.40%	0.00	0.00%
ZS2	1605.00	1455.00	90.65%	25.00	1.56%	125.00	7.79%	0.00	0.00%	0.00	0.00%
ZS3	39300.00	165.00	0.42%	5.00	0.01%	39130.00	99.57%	0.00	0.00%	0.00	0.00%
ZS4	150530.00	2790.00	1.85%	10.00	0.01%	147730.00	98.14%	0.00	0.00%	0.00	0.00%
ZS5	14310.00	4705.00	32.88%	15.00	0.10%	9590.00	67.02%	0.00	0.00%	0.00	0.00%
ZS6	376.47	76.47	20.31%	300.00	79.69%	0.00	0.00%	0.00	0.00%	0.00	0.00%
ZS7	725.00	320.00	44.14%	5.00	0.69%	400.00	55.17%	0.00	0.00%	0.00	0.00%
ZS8	760.00	550.00	72.37%	0.00	0.00%	210.00	27.63%	0.00	0.00%	0.00	0.00%
ZS9	547.22	519.44	94.92%	27.78	5.08%	0.00	0.00%	0.00	0.00%	0.00	0.00%
ZS10	655.00	515.00	78.63%	0.00	0.00%	100.00	15.27%	40.00	6.11%	0.00	0.00%
ZS11	4165.00	265.00	6.36%	25.00	0.60%	3875.00	93.04%	0.00	0.00%	0.00	0.00%
ZS12	2250.00	150.00	6.67%	50.00	2.22%	540.00	24.00%	1505.00	66.89%	5.00	0.22%
最大值	150530.00	4705.00	94.92%	300.00	79.69%	147730.00	99.57%	1505.00	66.89%	5.00	0.22%
最小值	376.47	76.47	0.42%	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
平均值	17982.81	989.66	42.77%	38.57	12.03%	16820.00	42.68%	134.17	7.03%	0.42	0.02%

(3) 多样性水平

本次调查,各站位浮游植物种数变化范围 8~23 种,平均 13.25 种(表 5.3.2-20)。 Shannon-wiener 多样性指数范围为 0.267~3.452,平均为 2.097,多样性指数以 ZS12 站位最高, ZS4 站位最低。Pielou 均匀度指数范围为 0.042~0.544,平均为 0.331,各站位生物量种间分布不均匀。

表 5.3.2-20 浮游植物的多样性及均匀度指数

站位	种类数	多样性指数 H	均匀度 J
ZS1	10	2.300	0.363
ZS2	10	1.737	0.274
ZS3	14	1.150	0.181
ZS4	12	0.267	0.042
ZS5	8	1.095	0.173
ZS6	10	1.398	0.220
ZS7	14	2.906	0.458
ZS8	9	2.542	0.401
ZS9	16	3.361	0.530
ZS10	12	2.950	0.465
ZS11	21	2.003	0.316
ZS12	23	3.452	0.544
范围	8~23	0.267~3.452	0.042~0.544
平均值	13.250	2.097	0.331

3、浮游动物

(1) 种类组成

本次调查共记录浮游动物 5 门 18 属 38 种,其中节肢动物 21 种,浮游幼虫 14 种,被囊动物、刺胞动物、栉板动物各 1 种。

(2) 浮游动物生物量、密度及其分布

本次调查结果显示,各采样站浮游动物湿重生物量变化幅度为52.25~454.79mg/m³,平均生物量为175.19mg/m³。在整个调查区中,生物量最高出现在ZS9站位,为426.75mg/m³,最低出现在ZS11站位,为52.25mg/m³。本次调查结果显示,

在个体数量分布方面,浮游动物密度变化幅度为 $405.00\sim52431.07$ ind./m³,平均密度为 9311.46 ind./m³。浮游生物最高密度出现在 ZS6 站位,为 52431.07 ind./m³,最低密度则 出现在 ZS10 站位,为 405.00 ind./m³(表 5.3.2-21)。

表 5.3.2-21 浮游动物生物量及密度

站位	生物量(mg/m³)	密度(ind./m³)		
ZS1	89.25	1332.50		
ZS2	120.50	995.00		
ZS3	127.75	1582.50		
ZS4	247.25	11312.50		
ZS5	55.75	2295.00		
ZS6	454.79	52431.07		
ZS7	118.50	10762.50		
ZS8	108.25	3407.50		
ZS9	426.75	22046.45		
ZS10	87.00	405.00		
ZS11	52.25	1457.50		
ZS12	214.25	3710.00		
范围	52.25~454.79	405.00~52431.07		
平均值	175.19	9311.46		

(3) 生物多样性指数及均匀度

本次调查海域各测站的浮游动物平均出现种类为 17.083 种(11~35 种);种类多样性指数范围为 1.200~2.688 之间,平均为 1.984,多样性指数最高出现在 ZS9 站位,其次为 ZS10 站位(多样性指数为 2.614),最低则出现在 ZS4 站位;种类均匀度的分布趋势与多样性指数相似,其变化范围在 0.229~0.512 之间,平均为 0.378,最高出现在 ZS9 站位,其次为 ZS10 站位(均匀度指数为 0.498),最低出现在 ZS4 站位(见表 5.3.2-22)。

表 5.3.2-22 浮游动物的多样性指数及均匀度

站位	种类数	多样性指数 H	均匀度指数 J
ZS1	15	2.156	0.411
ZS2	13	2.222	0.423
ZS3	11	2.122	0.404
ZS4	15	1.200	0.229
ZS5	12	2.527	0.481
ZS6	22	1.226	0.234
ZS7	17	1.906	0.363
ZS8	16	1.668	0.318
ZS9	35	2.688	0.512
ZS10	15	2.614	0.498
ZS11	18	1.974	0.376
ZS12	16	1.506	0.287
范围	11~35	1.200~2.688	0.229~0.512
平均值	17.083	1.984	0.378

(4) 优势种及其分布

以优势度≥0.02 为判断标准,本调查海域在调查期间浮游动物的优势种有 5 种,分别是刺尾纺锤水蚤(Acartiaspinicauda)、蔓足类幼虫(Cirripeditelarva)、披针纺锤 水 蚤(Acartiasouthwelli)、 桡 足 类 幼 体 (Copepodite) 和 驼 背 隆 哲 水 蚤(Acrocalanusgibber),优势度指数分别为 0.022、0.032、0.791、0.799、0.026(见表5.3.2-23)。这些物种的平均密度分别为 122.89ind./m³、171.26ind./m³、2201.38ind./m³、1830.22ind./m³ 和 622.99ind./m³,分别占浮游动物总密度的 1.65%、2.45%、43.34%、39.31%和 3.90%。桡足类幼体是本次调查的第一物种,该种类主要分布在本海域的 ZS6及 ZS9 站位,其密度为 19041.59ind./m³和 12011.11ind./m³。

表 5.3.2-23 浮游动物的优势种及优势度

中文名	拉丁文	优势度Y	平均密度(ind./m³)	密度占比
刺尾纺锤水蚤	Acartiaspinicauda	0.022	122.89	1.65%

中文名	拉丁文	优势度 Y	平均密度(ind./m³)	密度占比
蔓足类幼虫	Cirripeditelarva	0.032	171.26	2.45%
披针纺锤水蚤	Acartiasouthwelli	0.791	2201.38	43.34%
桡足类幼体	Copepodite	0.799	1830.22	39.31%
驼背隆哲水蚤	Acrocalanusgibber	0.026	622.99	3.90%

4、底栖生物

(1) 种类组成

本次调查共记录大型底栖动物 30 种,其中环节动物 12 种、节肢动物 11 种、脊索动物和软体动物各 2 种,星虫动物、棘皮动物和螠虫动物各 1 种(附录 III)。软体动物、环节动物、节肢动物和其他动物分别占总种数的 40.00%、36.67%、6.67%、6.67%、3.33%、3.33%和 3.33%,环节动物和节肢动物是构成本次调查海区大型底栖生物的主要类群。

(2) 底栖生物栖息密度和生物量

底栖生物定量采泥样品分析结果表明,调查海区大型底栖生物平均栖息密度为160.417ind./m²,以节肢动物的平均栖息密度最高,为104.583ind./m²,占总平均密度的65.19%;环节动物次之,平均栖息密度为47.500ind./m²,占总平均密度的29.61%;星虫动物的平均栖息密度为5.417ind./m²,占总平均密度的3.38%;软体动物的平均栖息密度为0.833ind./m²,占总平均密度的0.52%;脊索动物的平均栖息密度为1.250ind./m²,占总平均密度的0.78%;棘皮动物的平均栖息密度为0.417ind./m²,占总平均密度的0.26%;输虫动物的平均栖息密度为0.417ind./m²,占总平均密度的0.26%;基虫动物的平均栖息密度为0.417ind./m²,占总平均密度的0.26%(表5.3.2-24)。

底栖生物的平均生物量为 13.672g/m², 以节肢动物居首位,平均生物量为 7.687g/m², 占总平均生物量的 56.23%; 其次为环节动物,平均生物量为 4.863g/m², 占总平均生物量的 35.57%; 星虫动物的平均生物量为 0.658g/m², 占总平均生物量的 4.82%; 螠虫动物的平均生物量为 0.274g/m², 占总平均生物量的 2.00%; 脊索动物的平均生物量为 0.095g/m², 占总平均生物量的 0.70%; 软体动物的平均生物量为 0.064g/m², 占总平均生物量的 0.47%; 棘皮动物的平均生物量为 0.030g/m², 占总平均生物量的 0.22% (表 5.3.2-24)。

表 5.3.2-24 底栖生物各类群的生物量和栖息密度

站位	项目	合计	环节动物门	节肢动物门	脊索动物门	软体动物门	棘皮动物门	星虫动物门	螠虫动物门
701	密度(ind./m²)	350.000	40.000	310.000	0.000	0.000	0.000	0.000	0.000
ZS1	生物量 (g/m²)	5.550	2.265	3.285	0.000	0.000	0.000	0.000	0.000
792	密度 (ind./m²)	425.000	15.000	410.000	0.000	0.000	0.000	0.000	0.000
ZS2	生物量 (g/m²)	8.040	3.560	4.480	0.000	0.000	0.000	0.000	0.000
702	密度 (ind./m²)	105.000	90.000	10.000	5.000	0.000	0.000	0.000	0.000
ZS3	生物量 (g/m²)	9.130	9.015	0.060	0.055	0.000	0.000	0.000	0.000
704	密度 (ind./m²)	285.000	265.000	20.000	0.000	0.000	0.000	0.000	0.000
ZS4	生物量 (g/m²)	17.730	17.470	0.260	0.000	0.000	0.000	0.000	0.000
705	密度 (ind./m²)	275.000	25.000	250.000	0.000	0.000	0.000	0.000	0.000
ZS5	生物量 (g/m²)	5.440	0.370	5.070	0.000	0.000	0.000	0.000	0.000
706	密度 (ind./m²)	185.000	20.000	165.000	0.000	0.000	0.000	0.000	0.000
ZS6	生物量 (g/m²)	1.985	0.715	1.270	0.000	0.000	0.000	0.000	0.000
707	密度(ind./m²)	85.000	60.000	15.000	5.000	5.000	0.000	0.000	0.000
ZS7	生物量 (g/m²)	13.645	0.560	11.700	0.755	0.630	0.000	0.000	0.000
ZS8	密度(ind./m²)	90.000	5.000	20.000	0.000	0.000	0.000	65.000	0.000

站位	项目	合计	环节动物门	节肢动物门	脊索动物门	软体动物门	棘皮动物门	星虫动物门	螠虫动物门
	生物量 (g/m²)	58.660	0.130	50.630	0.000	0.000	0.000	7.900	0.000
ZS9	密度(ind./m²)	45.000	10.000	25.000	0.000	0.000	5.000	0.000	5.000
239	生物量 (g/m²)	18.095	0.415	14.030	0.000	0.000	0.365	0.000	3.285
ZS10	密度 (ind./m²)	20.000	20.000	0.000	0.000	0.000	0.000	0.000	0.000
ZS10	生物量 (g/m²)	22.285	22.285	0.000	0.000	0.000	0.000	0.000	0.000
ZS11	密度(ind./m²)	35.000	0.000	30.000	5.000	0.000	0.000	0.000	0.000
ZSII	生物量 (g/m²)	1.795	0.000	1.460	0.335	0.000	0.000	0.000	0.000
ZS12	密度 (ind./m²)	25.000	20.000	0.000	0.000	5.000	0.000	0.000	0.000
2312	生物量 (g/m²)	1.705	1.570	0.000	0.000	0.135	0.000	0.000	0.000
平均	密度 (ind./m²)	160.417	47.500	104.583	1.250	0.833	0.417	5.417	0.417
一十均	生物量 (g/m²)	13.672	4.863	7.687	0.095	0.064	0.030	0.658	0.274

本次调查结果表明,各监测站位的底栖生物栖息密度分布不均匀,其中 ZS2 站位密度最高,为 425.000ind./m²。ZS2 站位密度最高的原因在于记录到数量较多的节肢动物—日本长尾虫(*Apseudesnipponicus*),该物种在该站位的分布密度为 410.00ind./m²。分布密度在 200ind./m² 以上的站位为 ZS1、ZS2、ZS4、ZS5,其它站位的分布密度均在 25.00~185.00ind./m² 之间。

本次调查海域的底栖生物的生物量平面分布也不均匀,变化范围从 1.705~58.66g/m², 其中站位 ZS8 的生物量最高,构成高生物量的原因在于节肢动物一弧边招潮(*Ucaarcuata*)在该站位大量出现,生物量为 58.660g/m²。生物量最低的站位为 ZS12 站位,仅为 1.705g/m²,该站位生物量低的原因在于该站位记录到个体较小的环节动物和软体动物,个体较大的其它动物类群没有出现。

环节动物在 12 个站位中有 11 个站位出现,平均密度为 47.500 $ind./m^2$ 。密度分布范围为 0~265.00 $ind./m^2$;平均生物量为 4.863 g/m^2 ,生物量分布范围为 0.00~ 22.285 g/m^2 。

节肢动物在 12 个站位中有 11 个站位出现,平均密度为 104.583 $ind./m^2$ 。密度分布范围为 0~410.00 $ind./m^2$;平均生物量为 7.687 g/m^2 ,生物量分布范围为 0.00~50.630 g/m^2 。

软体动物在 12 个站位中有 2 个站位出现,平均密度为 0.833 ind./m²,密度分布范围为 $0\sim5.00$ ind./m²。平均生物量为 0.064 g/m²,生物量分布范围为 $0.00\sim0.630$ g/m²。

脊索动物在 12 个站位中有 3 个站位出现,平均密度为 1.250 $ind./m^2$ 。密度分布范围为 $0\sim5.00ind./m^2$,平均生物量为 $0.095g/m^2$,生物量分布范围为 $0.00\sim0.755g/m^2$ 。

棘皮动物在 12 个站位中有 1 个站位出现,平均密度为 0.417ind./m²。密度分布范围为 $0\sim5.00$ ind./m²;平均生物量为 0.030g/m²,生物量分布范围为 $0.00\sim0.365$ g/m²。

星虫动物在 12 个站位中有 1 个站位出现,平均密度为 5.417ind./m²。密度分布范围为 $0\sim65.00$ ind./m²;平均生物量为 0.658g/m²,生物量分布范围为 $0.00\sim7.900$ g/m²。

螠虫动物在 12 个站位中有 1 个站位出现,平均密度为 0.417ind./m²。密度分布范围为 $0\sim5.00$ ind./m²;平均生物量为 0.274g/m²,生物量分布范围为 $0.00\sim3.285$ g/m²。

(3) 底栖生物种类优势种和经济种类

大型底栖动物种类若按其优势度 *Y*≥0.02 时即被认定为优势种,那么本次调查海区的底栖生物有 3 个优势种,是节肢动物的日本长尾虫、缅甸角沙蚕和中华蜾蠃蜚,其优势度为 0.13、0.09 和 0.02(表 5.3.2-25)。日本长尾虫在 12 个站位中的 4 个站位出现,其平均栖息密度为 168.75ind./m²,占调查海区底栖生物平均密度的 10.07%,为该调查海区的第一优势种。

优势种	类群	优势度	平均密度 (ind./m²)	占总生物栖息密 度的百分比(%)
缅甸角沙蚕	环节动物门	0.09	75	4.48%
日本长尾虫	节肢动物门	0.13	168.75	10.07%
中华蜾蠃蜚	节肢动物门	0.02	110	6.57%

表 5.3.2-25 底栖动物优势种及优势度

(4) 底栖生物物种多样性指数

调查海域的各定量采样站位大型底栖生物出现种数变化的范围在 2~8 种/站,平均 4 种/站。多样性指数 (*H'*) 变化范围在 0.220~2.660 之间,平均值为 1.218 (表 5.3.2-26)。多样性指数最高出现在 ZS7 站位,最低则为 ZS2 站位,调查海域底栖生物多样性指数属中等水平。均匀度范围在 0.026~0.317 之间,平均为 0.145,反映物种分布不均匀。

站位	出现的种类数	多样性指数 H	均匀度指数J
ZS1	6	1.310	0.156
ZS2	2	0.220	0.026
ZS3	5	1.083	0.129
ZS4	5	0.839	0.100
ZS5	2	0.722	0.086
ZS6	2	0.494	0.059

表 5.3.2-26 各调查站位底栖生物出现种数与物种多样性指数

站位	出现的种类数	多样性指数 H	均匀度指数J
ZS7	8	2.660	0.317
ZS8	4	1.233	0.147
ZS9	5	1.880	0.224
ZS10	3	1.500	0.179
ZS11	3	1.149	0.137
ZS12	3	1.522	0.181
范围	2~8	0.220~2.660	0.026~0.317
平均值	4.000	1.218	0.145

5、潮间带生物

(1) 种类组成

本次调查共记录潮间带动物 21 种,其中节肢动物 14 种、环节动物 3 种、软体动物 2 种、脊索动物和星虫动物各 1 种(附录IV)。节肢动物占总种数的 66.67%。节肢动物是构成本次调查海区潮间带生物的主要类群。

C1、C2、C3 为泥质断面。

高潮区:生物群落组成以节肢动物为主及少量软体动物。出现的节肢动物主要有秀丽长方蟹和扁平拟闭口蟹等,均属于沙滩常见的节肢动物;

中潮区:生物群落主要由节肢动物为主及少量软体动物、环节动物和脊索动物组成,并采集到大量节肢动物秀丽长方蟹和扁平拟闭口蟹等;

低潮区:以节肢动物为主及少量环节动物和脊索动物组成,与中潮带物种分布差异不大。

(2) 潮间带生物量及栖息密度

①生物量及栖息密度的组成

调查断面中, C1 断面的平均生物量为 8.78g/m², C2 断面的平均生物量为 19.69g/m², C3 断面的平均生物量为 10.55g/m², 在栖息密度方面, C1 断面平均 栖息密度为 13.78ind./m², C2 断面的平均栖息密度为 20.50ind./m², C3 断面的平均栖息密度为 17.84ind./m²。

在 C1 断面生物量的组成中,以软体动物居首位,平均生物量为 5.02g/m², 占总生物量的 57.09%; 其次为节肢动物,平均生物量为 3.57g/m², 占总生物量 的 40.59%; 环节动物的平均生物量 0.20g/m², 占总生物量的 2.32%。C2 断面中,以节肢动物居首位,平均生物量 15.88g/m², 占总生物量的 80.65%; 其次为软体动物,其平均生物量 2.42g/m², 占总生物量的 12.31%; 星虫动物其平均生物量 1.39g/m², 占总生物量的 7.04%。C3 断面中,均为节肢动物,平均生物量 10.55g/m², 占总生物量的 100%(表 5.3.2-27)。

在栖息密度方面,C1 断面中,以节肢动物居首位,平均栖息密度为10.79ind./m²,占总栖息密度的78.27%;其次为环节动物,平均栖息密度为1.67ind./m²,占总栖息密度的12.08%;软体动物其平均栖息密度为1.33ind./m²,占总栖息密度的9.65%。C2 断面中,以节肢动物居首位,平均栖息密度为10.83ind./m²,占总栖息密度的52.85%;其次为星虫动物,其平均栖息密度为8.34ind./m²,占总栖息密度的40.66%;软体动物的平均栖息密度为1.33ind./m²,占总栖息密度的6.49%。C3 断面中,均为节肢动物,平均栖息密度为17.84ind./m²,占总栖息密度的100.00%(表5.3.2-27)。

表 5.3.2-27 潮间带平均生物量及栖息密度的组成

断	75F E	24.21.	节肢动物	软体动物	环节动物	星虫动物
面	项目 	总计	门	门	门	门
C1	平均密度(ind./m²)	13.78	10.79	1.33	1.67	0.00
C1 =	平均生物量(g/m²)	8.78	3.57	5.02	0.20	0.00
G2	平均密度(ind./m²)	20.50	10.83	1.33	0.00	8.34
C2	平均生物量 (g/m²)	19.69	15.88	2.42	0.00	1.39
С3	平均密度 (ind./m²)	17.84	17.84	0.00	0.00	0.00
	平均生物量(g/m²)	10.55	10.55	0.00	0.00	0.00

②生物量及栖息密度的水平分布

调查断面的底栖生物生物量和栖息密度的水平分布方面, C3 的栖息密度和生物量均为最高, 栖息密度为 231.98ind./m², 生物量为 137.14g/m²₂, (表 5.3.2-28)

表 5.3.2-28 潮间带生物量及栖息密度的水平分布

断面	项目	总计	节肢动物门	软体动物门	环节动物门	星虫动物门
C1	密度 (ind./m²)	123.32	118.66	1.33	3.33	0.00
CI	生物量 (g/m²)	44.648	39.225	5.015	0.408	0.00

断面	项目	总计	节肢动物门	软体动物门	环节动物门	星虫动物门
C2	密度(ind./m²)	104.67	86.67	1.33	0.00	16.67
	生物量 (g/m²)	132.22	127.024	2.423	0.00	2.773
C2	密度(ind./m²)	231.98	231.98	0.00	0.00	0.00
C3	生物量 (g/m²)	137.14	137.14	0.00	0.00	0.00

③生物量及栖息密度的垂直分布

在垂直分布上,结果显示: C1 断面中,潮间带生物的生物量表现为中潮区>高潮区>低潮区,栖息密度的垂直分布则表现为低潮区>中潮区>高潮区; C2 断面中,潮间带生物的生物量表现为高潮区>中潮区>低潮区,栖息密度的垂直分布则表现为低潮区>中潮区>高潮区; C3 断面中,潮间带生物的生物量表现为低潮区>中潮区>高潮区,栖息密度的垂直分布则表现为中潮区>高潮区,栖息密度的垂直分布则表现为中潮区>低潮区>高潮区(表 5.3.2-29)。

表 5.3.2-29 潮间带生物量及栖息密度的垂直分布

断面	项目	节肢动物门	软体动物门	环节动物门	星虫动物门						
	C1										
Art.	密度 (ind./m²)	68.00	0.00	0.00	0.00						
低	生物量 (g/m²)	17.85	0.00	0.00	0.00						
中	密度 (ind./m²)	42.66	1.33	1.33	0.00						
T	生物量 (g/m²)	14.33	5.02	0.04	0.00						
音	密度 (ind./m²)	8.00	0.00	2.00	0.00						
高	生物量 (g/m²)	7.05	0.00	0.37	0.00						
			C2								
lrt.	密度 (ind./m²)	54.00	0.00	0.00	14.00						
低	生物量 (g/m²)	23.80	0.00	0.00	2.00						
н	密度 (ind./m²)	26.67	1.33	0.00	2.67						
中	生物量 (g/m²)	42.80	2.42	0.00	0.77						
音	密度 (ind./m²)	6.00	0.00	0.00	0.00						
高	生物量 (g/m²)	60.42	0.00	0.00	0.00						

断面	项目	节肢动物门	软体动物门	环节动物门	星虫动物门			
	C3							
Art.	密度 (ind./m²)	84.00	0.00	0.00	0.00			
低	生物量 (g/m²)	50.66	0.00	0.00	0.00			
н.	密度 (ind./m²)	91.98	0.00	0.00	0.00			
中	生物量 (g/m²)	48.28	0.00	0.00	0.00			
高	密度 (ind./m²)	56.00	0.00	0.00	0.00			
	生物量 (g/m²)	38.20	0.00	0.00	0.00			

(3) 潮间带生物多样性指数

计算结果显示,调查断面潮间带多样性指数(H'属中等水平),均匀度(J)属于低等水平,3条断面多样性指数平均为0.923,均匀度指数平均为0.117(表5.3.2-30)。

断面名 样方内出现的种类数 多样性指数 H 均匀度J 称 **C**1 4 0.314 0.040 C210 2.144 0.271 5 0.039 **C3** 0.312

表 5.3.2-30 调查海区潮间带生物多样性指数及均匀度

5.3.2.8 渔业资源调查结果

项目组于 2023 年 11 月在项目所在海域分别布设了 12 个鱼卵仔稚鱼调查站位。样品的采集和分析均按《海洋监测规范》(GB17378-2007)和《海洋调查规范》(GB/T12763-2007)中规定的方法进行。

1、鱼卵仔鱼

(1) 种类组成

在采集的12个样品中,经鉴定,共出现了仔鱼3种,未采集到鱼卵,其中 鲈形目鉴定出3科3种(表5.3.2-31)。

仔鱼的种类仅记录鲷科(Sparidae)、鳚科(Blenniidae)、鰤科(Callionymidae)。

表 5.3.2-31 调查海区鱼卵、仔鱼种类组成

种类		拉文种名	鱼卵	仔鱼
鲈形目	鲷科	Sparidae		+
鲈形目	鳚科	Blenniidae		+
鲈形目	鯔科	Callionymidae		+

(2) 数量分布

本次调查 12 个调查站位均未采集到鱼卵及仔鱼。

2、游泳生物

(1) 种类组成

本次调查共捕获游泳生物 33 种,其中鱼类 23 种,甲壳类 10 种(表 5.3.2-32)。 本次调查,各站位出现种类情况见表 5.3.2-32。

表 5.3.2-32 各站位出现种类统计结果

) H + 1 L L L		鱼类		甲壳类		
调査站位	种类数	比例 (%)	种类数	比例(%)		
T1	9	100%	0	0.00%		
T2	11	100%	0	0.00%		
Т3	6	37.5%	10	62.5%		
T4	15	100%	0	0.00%		
ZS2	3	75%	1	25%		
ZS3	2	50%	2	50%		
ZS4	3	75%	1	25%		
ZS5	4	100%	0	0.00%		
ZS6	5	83.33%	1	16.67%		
ZS8	4	100%	0	0.00%		
ZS10	3	100%	0	0.00%		
ZS11	3	100%	0	0.00%		

(2) 渔获率

总重量渔获率分别为 6.80542kg, 其中鱼类重量渔获率为 5.96003kg, 分别占总重量渔获率和总个体渔获率的 87.58%; 甲壳类重量渔获率为 0.84539kg/h, 占总重量渔获率的 12.42%(表 5.3.2-33)

表 5.3.2-33 各站位重量渔获率(kg/h)及各类群百分比

调查站位	总重量渔获率	鱼类		甲壳类	
		重量渔获率(kg/h) 百分		重量渔获率(kg/h)	百分比
t1	1.1793	1.1793	100.00%	0	0.00%
t2	1.8348	1.8348	100.00%	0	0.00%
t3	1.09369	0.2813	25.72%	0.81239	74.28%
t4	1.9725	1.9725	100.00%	0	0.00%
ZS2	0.08152	0.07841	96.18%	0.0031	3.82%
ZS3	0.08820	0.07180	81.40%	0.01640	18.60%
ZS4	0.1137	0.10450	91.93%	0.0092	8.07%
ZS5	0.04885	0.04885	100%	0	0.00%
ZS6	0.08943	0.08514	95.21%	0.0043	4.79%
ZS8	0.05877	0.05877	100%	0	0.00%
ZS10	0.19974	0.19974	100%	0	0.00%
ZS11	0.04492	0.04492	100%	0	0.00%
合计	6.80542	5.96003	87.58%	0.84539	12.42%

3、鱼类资源状况

(1) 种类组成

本次调查捕获的鱼类 27 种。鱼类中大多数种类为我国沿岸、浅海渔业的兼捕对象。

(2) 优势种

鱼类 IRI 值在 500 以上的有 4 种,分别为多鳞鱚、红尾银鲈、斯氏莫鲻、棱 鮻,其 IRI 指数列于表 5.3.2-34。。

表 5.3.2-34 鱼类的 IRI 指数

种名	N%	W%	F%	IRI
多鳞鱚	17.851	15.556	25.00	835.18
红尾银鲈	12.257	13.968	25.00	655.63
棱鮻	4.410	10.476	50.00	744.33
斯氏莫鲻	17.575	9.524	25.00	677.48

(3) 主要经济鱼类的分布洄游及生物学特性

A 多鳞鱚 Sillagosihama

多鳞鱚是鲈形目鱚科鱚属的鱼类,又叫沙梭、沙钻、麦穗、梭子鱼、沙姜仔、船丁鱼、沙丁鱼。身体细长,略呈圆柱状,稍侧扁;头端部钝尖,吻较长;体被弱栉鳞;头部除吻端、两颌外,大部分被鳞;侧线完全,几乎呈直线;尾柄短,尾鳍后缘浅凹形。身体乳白色,略带浅黄色,有银色光泽;第一背鳍前部黑色,有时在第二背鳍鳍膜间有 4 纵行褐色斑点;尾鳍上、下叶末端灰黑色;其余鳍透明。

地理分布:分布于印度洋北部沿岸,东至澳大利亚,北至朝鲜,日本。在中国渤海、黄海、东海、台湾海峡、南海等海域亦有分布。

生活习性:温性小型底层鱼类,栖息于沙底质浅海、河口、红树林水域,有时进入淡水。一旦受到惊吓,喜钻到沙中。摄食长尾类、歪尾类、多毛类、端足类、糠虾类等小型无脊椎动物。2龄性成熟,产卵期6~8月,怀卵量6742~20372粒,平均18763粒。卵浮性,卵圆形,油球1个。

B 红尾银鲈 Gerres erythrourus

红尾银鲈,鲈形目银鲈科银鲈属的一种鱼类,又称短钻嘴鱼、奥奈银鲈,奥 奈钻嘴鱼,俗名碗米仔、银鲈。

红尾银鲈体长为椭圆形,体长为体高的 2.6-3 倍,但在某些种类中,体高较深,其标准体长约为其体高的 2.1-2.2 倍。口小,两颌能向前充分伸出。侧线鳞35-38 个,侧线上鳞 4 个。胸鳍伸达肛门上方。背鳍上缘灰色,其他各鳍黄色。背鳍硬棘 9 枚、软条 10 枚;臀鳍硬棘 3 枚、软条 7 枚。体侧扁,略呈卵圆形。

眼大。鱼体银白色,背鳍、腹鳍与臀鳍呈黄色,尾鳍叉形、黄色。体长可达 30 厘米。

红尾银鲈属于热带、亚热带之小型底栖性鱼类,常生活于 10-40 公尺的海域中,栖息在沿岸具沙泥底质的海域,喜欢成群活动,喜欢活动于沙泥底质区的河口、内湾或红树林,属广盐性、底栖鱼类。主要分布于印度西太平洋区,包括东非、马达加斯加、毛里求斯、留尼汪、塞舌尔群岛、马尔代夫、红海、波斯湾、阿拉伯海、斯里兰卡、印度、孟加拉湾、安达曼海、泰国、缅甸、柬埔寨、马来西亚、菲律宾、印尼、日本、台湾、中国沿海、新几内亚、马里亚纳群岛、帕劳、密克罗尼西亚、马绍尔群岛、瑙鲁、斐济群岛、瓦努阿图、萨摩亚群岛、东加、澳洲、所罗门群岛、新喀里多尼亚等海域。

红尾银鲈对环境的适应力不错,略能忍受污染的水质。游泳方式特殊,为一游一停。肉食性,以小型底栖无脊椎动物为主,如端足类、多毛类、桡脚类等。产卵期在3至4月间。

4、甲壳类资源状况

(1) 种类组成

本次调查共捕获的甲壳类共12种。

(2) 优势种

甲壳类 IRI 值在 500 以上的有 0 种,在 100 以上的有 7 种,分别为:远洋梭子蟹、小口虾蛄属、日本蟳、须赤虾、长趾蝉虾、近缘新对虾、矛形梭子蟹,其 IRI 指数列于表 5.3.2-35。。

种名	N%	W%	F%	IRI
近缘新对虾	2.78	8.03	25.00	270.16
矛形梭子蟹	6.21	9.49	8.33	130.83
日本蟳	23.86	8.76	8.33	271.79
小口虾蛄属	22.24	21.90	8.33	367.79
须赤虾	10.00	21.90	8.33	265.80
远洋梭子蟹	17.67	0.73	8.33	153.32
长趾蝉虾	10.62	21.90	8.33	271.00

表 5.3.2-35 甲壳类的 IRI 指数

(3) 主要种类的分布及生物学特征

A.远海梭子蟹 Portunuspelagicus

远海梭子蟹,是十足目梭子蟹科梭子蟹属甲壳动物,又称花蟹。头胸甲宽约 13 厘米,背面长有许多较粗的颗粒;中胃区有 2 条斜行的颗粒脊,后胃区有 2 条;前鳃区和心区各有 1 对,中鳃区 1 对不明显,额有 4 个尖齿;头胸甲前侧缘共有 9 个齿,螯足长节外缘末端有 1 个刺,前缘有 3 个刺;腕节内外角各有 1 个刺,掌节有 7 条纵向的隆脊。雄性腹部呈三角形,第六腹节梯形;背部的花白云纹比雌蟹更加明显,螯足内侧会呈现较为明显的蓝色。

远海梭子蟹分布于中国东海、南海及台湾海域,广泛分布于印度—西太平洋的热带和亚热带海区。栖息于有大叶藻、泥或石块的潮间带,生活在潮下带沙、软泥底质的浅海和河口。属暖水性近岸种,白天伏在海底、夜间活动觅食。捕食甲壳类和其他底栖动物。有两个繁殖高峰期,分别在 3-5 月和 8-10 月; 在 2 月底 3 月初已开始向近岸移动,在 3 月底 4 月初出现产卵群; 交配期一般在 8-10 月。

B. 日本蟳 Charybdisjaponica

日本蟳是梭子蟹科、蟳属的节肢动物,俗称赤甲红、海红、沙蟹、石寄角、石蟹等。头胸甲横卵圆形,宽约9厘米;表面常长有绒毛,胃区、鲤区长有隆脊。额分6个齿,中央2个齿突出;背眼窝缘有2个缝;头胸甲前侧缘长有6个齿。螯足长节前缘有3个齿;腕节内末角有1个强壮的刺,外侧面有3个小刺;掌节表面有3个隆脊,长有5个刺。游泳足长节后缘近末端有1个锐刺。雄性腹部三角形,第六腹节宽大于长。

5.4 大气环境质量现状

项目属于二类环境空气质量功能区,执行《环境空气质量标准》(GB3095-2012)及其 2018 年修改单中的二级标准。

根据《湛江市生态环境质量年报简报》(2023 年) (广东省湛江生态环境监测中心站),2023 年,2023 年湛江市空气质量为优的天数有229 天,良的天数126 天,轻度污染天数10 天,优良率97.3%。

湛江市 2023 年二氧化硫、二氧化氮年均浓度值分别为 8μg/m³、12μg/m³,PM₁₀年浓度值为 33μg/m³,一氧化碳(24 小时平均)全年第 95 百分位数浓度值为 0.8mg/m³,均低于《环境空气质量标准》(GB3095-2012)中一级标准限值;PM_{2.5} 年浓度值为 21μg/m³,臭氧(日最大 8 小时平均)全年第 90 百分位数为 130ug/m³,均低于《环境空气质量标准》(GB3095-2012)及其修改单中二级标准限值。

因此,项目所在区域湛江市的环境空气质量良好,能满足《环境空气质量标准》(GB3095-2012)及2018年修改单中的二级标准要求。

5.5 声环境质量现状

本项目位于湛江市东海岛西部沿岸滩涂,没有纳入声环境功能区划,本项目参照《声环境质量标准》(GB3096-2008)的要求:项目为农村地区,因此执行《声环境质量标准》(GB3095-2012)的1类标准环境噪声限值。

根据湛江市生态环境局发布的《2023 年湛江市生态环境质量年报简报》,第六章声环境质量第一节功能区噪声: 2023 年功能区环境噪声昼间达标率为93%,夜间达标率为80%。第二节区域环境噪声: 2023 年区域环境噪声昼间平均等效声级为54.4 分贝,与去年相比下降1.3 分贝。城市区域环境噪声总体水平等级为二级,评价结果为较好。

项目为海洋生态保护修复项目,主体位于浅海滩涂的围塘范围内,周边没有大中型噪声污染源,基本均为海风等背景噪声;由此可知,项目区域声环境质量良好,能满足《声环境质量标准》(GB3096-2008)1类声功能环境噪声限值要求。

根据《环境影响评价技术导则 声环境》(HJ2.4-2021),项目建设前后声环境没有变化,受影响人口并未增加,但项目位于1类声功能区,声环境评价等级按二级评价考虑,评价范围按项目周边 200m 考虑。

根据现场踏勘及收集资料,声环境影响评价范围内(200m)没有声环境保护目标,因此没有声环境敏感目标需要现场监测;此外,评价范围内也没有具有明显影响的现状声源;且项目属于红树林修复系统,运营期项目基本没有声源;根据导则要求,无需开展现状噪声监测。

5.6 动物资源现状调查

本节引自《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林 国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所, 2024年4月)。

5.6.1 调查时间及调查方法

5.6.1.1 调查时间

2024年3月,受湛江开发区新月发展有限公司委托,中国林业科学研究院 热带林业研究所采用实地路线调查和资料调查相结合的方法,对红树林种植建设 项目区及周围延伸1000m区域内的动物进行了调查和生态影响评价。

5.6.1.2 鸟类调查方法

对建设项目生态评价区进行设置调查样线,围绕红树林共设置 4 条 500m 调查样线,项目区内、外各设置 2 条样线,采取路线调查法进行。

5.6.1.3 大型底栖生物调查方法

采用样框取样调查法,选用 25cm×25cm 的定量样框,调查范围内设置 12 个取样点,取样面积为 0.25m²。取样时,先将定量框插入底质内,抓取可见生物至样品瓶,再用工兵铲铲取框内泥沙至 30 cm 深度,获得泥土搬运至有水源区域用 0.5 mm 孔径的底栖筛网筛洗。所获生物样品用 5%的甲醛溶液现场固定,带回实验室分析鉴定、计数、称重测定生物量。

5.6.1.4 鱼类调查方法

选用当地渔民使用较为广泛的蜈蚣网进行红树林鱼类调查。网 具的网身为长方体形状,网具材料为 PE,网孔 8.5mm,长约 10m。一张蜈蚣网一般由 23个小长方体铁框组成,每个小铁框长 35cm,宽 20cm,高 25cm,铁框两侧各有一个漏斗形开口。这类网具一般由 20-30 个或以上的此类独立的单位首尾相接一起使用,因其形状似蜈蚣,当地人称之为蜈蚣网,每条调查断面放置 3 张蜈蚣网进行采样。采样时间为大潮期间连续 2 天。蜈蚣网均放置在与潮水进入林内的方向相垂直的方向,每天涨潮前放入林内,退潮后起网收获鱼类。样品使用聚乙烯泡沫箱加入碎冰进行保存,样品带回实验室后转移至冰柜中低温冰冻保存。鱼类样品分析鉴定到种,记录各种类的名称、体长、重量、尾数。

5.6.2 调查结果

5.6.2.1 鸟类调查结果

- (1) 物种组成: 该区域共监测到 16 科 31 种鸟类(见表 5.6.2-1), 其中近危(NT)1种。共记录鸟类 1773 只,以鸻形目为主,数量为 1634 只,占比 92.16%
 - (2) 生境类型及习性:
- 1)游禽类:生活于红树林或浅水湿地或虾塘等湿地附近且能潜水或游泳的类群,包括雁形目的绿翅鸭、鸊鷉目的小䴙䴘,项目区 共记录 2 种,白天活动,主要食物为水域的鱼类或虾等,警惕性较强,人为直接干扰距离为 200 m 左右,适应人为干扰适应能力较低,主要分布于红树林及浅水湿地附近,因此浅水湿地的重要性极为明显和突出,为雁鸭类重点保护鸟类提供了重要的气息场所。
- 2)涉禽类:主要分布于项目区的红树林及其滩涂、浅水湿地、河流、水田等环境中,白天活动,食物为浅水区域的鱼、虾及附近的昆虫等,夜间多隐蔽于红树林或在高大的乔木或沙地上休息,除鹭科 留鸟在项目区见到繁殖巢穴外,其余很多种类为越冬冬候鸟,涉禽类共记录 34 种,是项目区最为优势的鸟类类群。该类群极易受到人为干扰的影响,一般在距离 200 m 为该类群的警戒距离,人为干扰接触过近,则直接采取飞翔的方式进行躲避干扰或远离干扰源。
- 3)攀禽类:主要分布在项目区周边陆地村庄,以路边乔木、灌丛、草地为主要觅食和栖息地。偶尔飞入连片分布靠近陆域的红树林内,常常在树木上攀缘和栖息,以鹃形目、雨燕目、佛法僧目的鸟类为代表,生境多样化,食物种类多样。以留鸟为主,没有迁徙习性,其中褐翅鸦鹃、翠鸟、棕背伯劳等是灌草丛常见物种,对人为干扰适应能力较强。

表 5.6.2-1 鸟类名录及数量表

序号	目	科	物种	学名	濒危等级	数量(只)
1			苍鹭	Ardea cinerea	LC	4
2	曹形目 鹭科	路套	白鹭	Egretta garzetta	LC	36
3		鸟件	大白鹭	Ardea alba	LC	8
4			池鹭	Ardeola bacchus	LC	4
5	雁形目	鸭科	绿翅鸭	Egretta intermedia	LC	8
6	䴙䴘目	䴙䴘科	小䴙䴘	Tachybaptus ruficollis	LC	7
7	鹃形目	杜鹃科	褐翅鸦鹃	Centropus sinensis	LC	3
8	鹰形目	鹰科	黑翅鸢	Elanus caeruleus	LC	2
9	佛法僧目	翠鸟科	普通翠鸟	Alcedo atthis	LC	5

10	鹤形目	秧鸡科	白胸翡翠	Halcyon smyrnensis	LC	7
11			金斑鸻	Pluvialis fulva	LC	2
12			环颈鸻	Charadrius alexandrinus	LC	420
13			金眶鸻	Charadrius dubius	LC	60
14			黑腹滨鹬	Calidris alpina	LC	370
15		 	红颈滨鹬	Calidris ruficollis	NT	35
16			三趾滨鹬	Calidris alba	LC	10
17	鸻形目		青脚鹬	Tringa nebularia	LC	18
18			泽鹬	Tringa stagnatilis	LC	12
19			白腰草鹬	Tringa ochropus	LC	35
20			矶鹬	Actitis hypoleucos	LC	40
21			中杓鹬	Numeniusphaeopu	LC	2
22		鸥科	红嘴鸥	Larus ridibundus	LC	360
23			须浮鸥	Chlidonias hybridus	LC	250
24		燕鸥科	鸥嘴噪鸥	Gelochelidon nilotica	LC	20
25			普通燕鸥	Sterna hirundo	LC	6
26		鹡鸰科	白鹡鸰	Motacilla alba	LC	2
27		鹟科	鹊鸲	Copsychus saularis	LC	3
28	雀形目	卷尾科	黑卷尾	Dicrurus macrocercus	LC	3
29	伯劳科		棕背伯劳	Lanius schach	LC	5
30		椋鸟科	灰背椋鸟	Sturnia sinensis	LC	6
31		燕科	家燕	Hirundo rustica	LC	30

注: EN 濒危, VU 易危, NT 近危, LC 无危。

(3) 鸟类多样性分析:采用物种丰富度和 Shannon-Wiener 多样性指数分析鸟类多样性。计算公式为:

D= (S-1) /log 2 N
$$H' = -\sum_{i=1}^{S} P_i \log_2 P_i$$

式中, D, 物种丰富度; S, 所有鸟类的种数; N, 所有鸟类的个数; H 所为 Shannon-Wiener 多样性指数; Pi 第 i 种类的个数占总个数的比例。

评价区红树林湿地鸟类 Shannon-Wiener 多样性指数 1.94, Margalef 物种丰富度指数为 6.20。鸟类多样性水平比较高。

5.6.2.2 大型底栖生物调查结果

根据现场调查,调查区域共发现大型底栖动物 17 种,平均生物量为 41.635 个/m², Shannon-Wiener 达到 2.94。结果表明评价区红树林湿地大型底栖动物多样性较高。

表 5.6.2-2 红树林大型底栖动物名录及其数量

序号	类群	种名	拉丁文名	数量(个)	密度(个/m²)	重量(克)	生物(克/m²)
1	软体动物	尖锥拟蟹守螺	Cerithidea largillierti	6	24	6.522	156.525
2	节肢动物	双齿近相手蟹	Sesarma bidens	3	12	1.552	18.629
3	软体动物	绯拟沼螺	Assiminea latericea	2	8	0.029	0.228
4	星虫动物	厥目革囊星虫	Phascolosoma scolops	7	28	0.057	1.599
5	 节肢动物	粗糙跳钩虾	Orchestia anomala	1	4	0.011	0.045
6	11 放列初	纽虫	Insecta larvae	1	4	0.057	0.228
7	软体动物	短拟沼螺	Assiminea brevicula	1	4	0.040	0.159
8	节肢动物	褶痕拟相手蟹	Parasesarma plicatum	6	24	2.335	56.035
9	节肢动物	弧边招潮蟹	Uca arcuata	21	84	0.756	63.489
10	软体动物	红树蚬	Assiminea latericea	4	16	0.049	0.783
11	秋醉幼初	胖小塔螺	Pyramidellidae	10	40	0.304	12.158
12		光滑狭口螺	Stenothyra glabar	1	4	0.005	0.020
13	软体动物	长山椒螺	Assiminea vegans	4	16	0.030	0.473
14	星虫动物	可口革囊星虫	Phascolosoma esculenta	3	12	0.043	0.514
15	节肢动物	叶齿鼓虾	Alpheus lobidens	4	16	0.351	5.614
16	环节动物	溪沙蚕	Namalycastis abiuma	4	16	0.056	0.898
17	软体动物	黑环左式螺	Assiminea vegans	4	16	0.030	0.473

5.6.2.3 鱼类调查结果

本次调查共记录到鱼类 10 种,没有记录到国家重点保护物种。

序号 数量(尾) 种名 拉丁名 生物量(克) 1 斑尾复鰕虎鱼 Synechogobius ommaturus 2 19.186 2 大弹涂鱼 22.787 Boleophthalmus pectiniros tris 6 3 花鲈 2 282.214 Lateolabraxjaponocus 4 嵴塘鳢 4 66.178 Butis butis 5 尼罗罗非鱼 Oreochromis niloticus 8 2.183 前鳞骨鲻 Osteomugil ophuyseni 2 2.591 6 7 青斑细棘鰕虎鱼 Acentrogobius viridipunctatus 8 75.041 8 舌鰕虎鱼 Glossogobiuss giuris 12 120.839 9 长吻银鲈 2 Gerres longirostris 6.579 3 10 鲻 Mugil cephalus 30.865

表 5.6.2-3 红树林鱼类名录及其数量

5.7 红树林资源现状调查

本节引自《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林 国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所, 2024年4月)。

5.7.1 植物调查方法

中国林业科学研究院热带林业研究所于 2024 年 2-3 月组织相关人员赴现场进行生态环境样方调查。根据遥感解译和实地调查,对评价区的红树林湿地进行群落分类。通过地面调查确定群落的树种组成,凡是在样方内所占面积大于 20%的树种,均在群落命名中体现,依据各个树种数量多少依次排列,确定群落名称。依据《全国湿地资源调查与监测技术规程》(试行),对于乔木红树植物(无瓣海桑群落、白骨壤、木榄、红海榄、秋茄),样方面积设置为 10m×10 m; 对于低矮灌木红树植物(桐花树),样方面积为 5m×5m。在每个小样方内对木本植物进行每木调查。计算平均胸径、平均树高和植株密度。对于非红树植物采用样线调查的方法,记录调查范围内的植物种类。本次调查共设置植物样方调查 14个,项目区内 8 个样方,项目区外 6 个样方。

调查范围集中在保护区范围内的红树林林带的植物和植被的调查。在调查过程中,确定评价区内的植物种类、经济植物的种类及植物资源状况、珍稀濒危植

物的种类及生存状况等。实地调查采用线路调查与重点调查相结合的方法。在项目工程重点区域以及植被状况良好的区域进行重点调查;对于没有原生植被的区域采取线路调查;珍稀濒危植物的调查及资源植物的调查采取线路调查等方法相结合进行调查;对有疑问的植物采集标本并拍照,将野外采集的标本进行室内标本鉴定,并进一步收集资料,按照上述基础工作所收集的调查数据编撰评价区植物名录。依据现场填绘的植被原图,采用图形叠置法制作植被图,图形制作处理平台为 ArcGis 10.2。

5.7.2 调查结果

5.7.2.1 红树植物种类

根据实地调查知,评价区内真红树植物 6 科 8 种,半红树植物 5 科 5 种,伴生植物 18 科 27 种,未记录到珍稀濒危野生植物,真红树植物多为乔木,集中连片分布,优势树种为白骨壤(Avicennia marina)、秋茄(Kandelia obovata)、红海榄(Rhizophora stylosa)、桐花树(Aegiceras corniculatum)木榄(Bruguiera gymnorhiza)、无瓣海桑(Sonneratia apetala)、卤蕨(Acrostichum aureum)、老鼠簕(Acanthus ilicifolius)。半红树植物主要为灌木或小乔木,在养殖塘道路边缘和潮间带分布,优势种为海漆(Excoecaria agallocha)、黄槿(Hibiscus tiliaceus)、苦郎树(Clerodendrum inerme);伴生植物主要为草本或草质藤本、种类多,在养殖塘道路和红树林下等区域分布。从红树林的结构组成与分布格局上看,评价区红树林群落结构完整,具有典型滨海红树林的植物组成特征。由于长期受人类活动干扰,树种组成以常见红树植物为主,没有发现珍稀濒危物种、小种群、古树等。

表 5.7.2-1 评价区红树植物目录

	科	属	种
	红树科	木榄属 Bruguiera	木榄 Bruguiera gymnorrhiza
		秋茄属 Kandelia	秋茄 Kandelia obovata
真	Rhizophoraceae	红树属 Rhizophora	红海榄 Rhizophora stylosa
红树	马鞭草科 Verbenaceae	海榄雌属 Avicennia	白骨壤 Avicennia marina
植植	卤蕨科 Acrostichaceae	卤蕨属 Acrostichum	卤蕨 Acrostichum aureum
物	爵床科 Acanthaceae	老鼠簕属 Acanthus	老鼠簕 Acanthus ilicifolius
	紫金牛科 Myrsinaceae	桐花树属 Aegiceras	桐花树 Aegiceras corniculatum
	海桑科 Sonneratiaceae	海桑属 Sonneratia	无瓣海桑 Sonneratia apetala

半	大戟科 Euphorbiaceae	海漆属 Excoecaria	海漆 Excoecaria agallocha
红	锦葵科 Malvaceae	木槿属 Hibiscus	黄槿 Hibiscus tilisceus
树	马鞭草科 Verbenaceae	大青属 Clerodendrum	苦郎树 Clerodendrum inerme
植	菊科 Compositae	阔苞菊属 Pluchea	阔苞菊 Pluchea indica
物	夹竹桃科 Apocynaceae	海檬果属 Cerbera	海檬果 Cerbera manghas

5.7.2.2 红树植物群落

在已有工作和资料基础上,根据野外实地调查,将评价区红树植物划分为 14个红树植物群落类型。采用无人机遥感确定各个群落的空间分布,分布如图 5.7.2-1 所示。各个群落分类见表 5.7.2-2。

表 5.7.2-2 评价区红树植物群落类型和面积

序号	群落类型	面积(hm²)	占比(%)
1	无瓣海桑、 白骨壤	162.3	23.76
2	无瓣海桑、 白骨壤、桐花树	145.56	21.31
3	红海榄	105.27	15.41
4	无瓣海桑	74.79	10.95
5	红海榄、 白骨壤	61.48	9.00
6	无瓣海桑、桐花树、 白骨壤	51.56	7.55
7	桐花树、 白骨壤	26.89	3.94
8	桐花树、红海榄	20.26	2.97
9	红海榄、 白骨壤、无瓣海桑	9.97	1.46
10	桐花树	9.73	1.42
11	白骨壤、桐花树	7.03	1.03
12	白骨壤	3.00	0.44
13	白骨壤、无瓣海桑	2.28	0.33
14	红海榄、秋茄	1.77	0.26
15	白骨壤、红海榄	1.06	0.16
合计	682.95		100

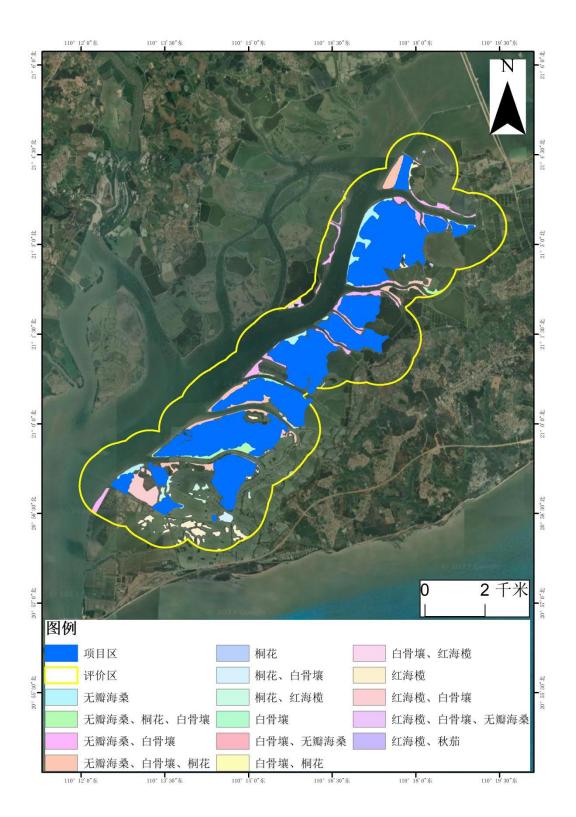


图 5.7.2-1 评价区红树植物群落分布图

常见的群落类型及其群落结构如下:

- (1) 无瓣海桑+白骨壤群落:白骨壤主要在大潮沟两侧,白骨壤和无瓣海桑 形成双层立体分布。通过设置100m²的样方进行群落调查,群落密度为210株/hm², 树高1.32-7.51m,无瓣海桑平均胸径9.7±0.5cm,白骨壤平均基径1.60±0.3 cm。
- (2) 红海榄群落:主要分布在养殖塘边缘和小潮沟两侧,多表现为纯林。 树龄差异较大,通过设置 $100~\text{m}^2$ 的样方进行群落调查,群落密度为 $244~\text{k/hm}^2$,平均树高 $1.91\pm0.42\text{m}$,平均胸径 $5.0\pm0.4\text{cm}$ 。
- (3)桐花树+白骨壤群落:集中以条带状分布在大潮沟边缘。设置 100m² 样带进行群落结构调查,群落密度为 342 株/100hm²,平均树高 1.67±0.21m,平均基径 1.74±0.15cm。
- (4) 无瓣海桑群落:主要分布在大潮沟两侧,林下有零星桐花树和白骨壤小苗分布。设置 100m² 样带进行群落结构调查,株密度为 107 株/100hm²,无瓣海桑平均株高 5.7±0.61m,平均胸径 9.32±1.5cm。

5.8 陆域生态环境质量现状

本节引自《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林 国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所, 2024年4月)。

根据《导则》要求,重点生态环境影响评价范围根据项目区边界向外扩展 1km(中间如果有超过 500m 宽的潮汐水道,则评价区不再外延至 1000m),评价范围见图 5.8-1,项目区和保护区位置关系见图 5.8-2。

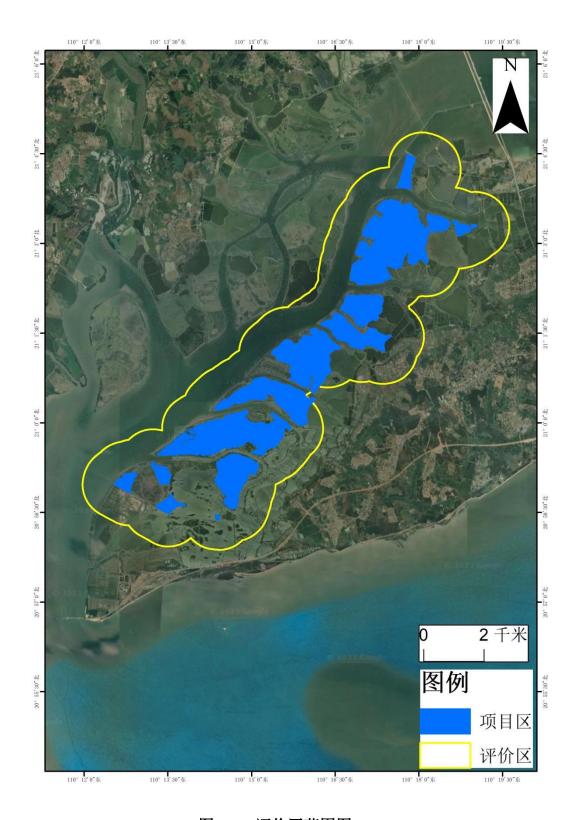


图 5.8-1 评价区范围图

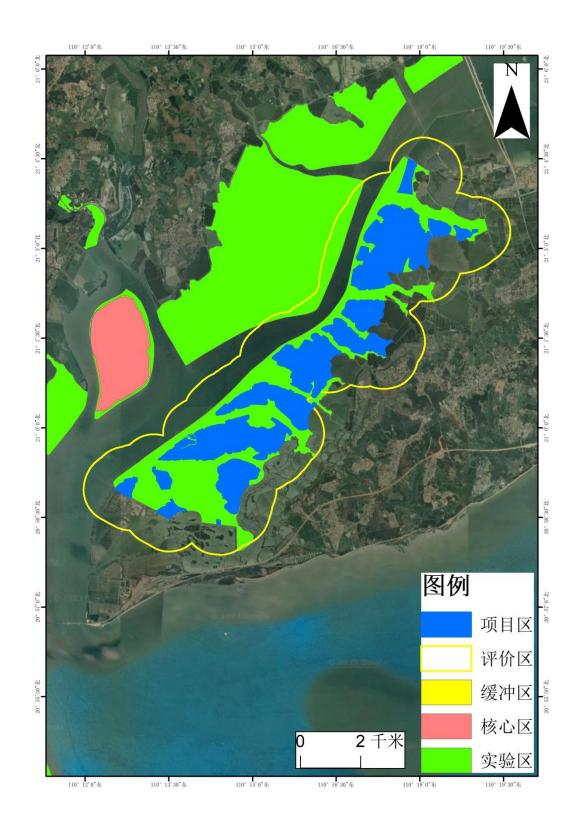


图 5.8-2 项目生态影响评价范围与保护三区关系图

(1) 土地利用现状

结合国土三调土地类型,评价区主要土地利用类型为坑塘水面、水域、红树林地、沿海滩涂、养殖坑塘和河流水面,面积分别是 2833.71hm^2 、 1642.82hm^2 、 682.95 hm^2 、 627.82 hm^2 、 521.32 hm^2 、 517.74 hm^2 ,占比分别为 40.44%、23.44%、9.75%、8.96%、7.44%和 7.39%,占总面积 97.41%。各类型面积如表 5.8.1-1所示。

表 5.8.1-1 评价区土地利用类型图(国土三调)

序 序 面积 面积 类型 比例 (%) 类型 比例 (%) 묵 묵 (hm^2) (hm^2) 坑塘水面 2833.71 40.44 铁路用地 1 16 2.63 0.04 水域 1642.82 23.44 17 公共设施用地 1.42 0.02 3 红树林地 682.95 9.75 18 城镇村道路用地 1.36 0.02 沿海滩涂 627.82 8.96 19 公路用地 0.71 0.01 4 5 养殖坑塘 工业用地 0.01 521.32 7.44 20 0.53 6 河流水面 517.74 7.39 21 采矿用地 0.49 0.01 7 水田 果园 0.45 0.01 67.32 0.96 22 8 农村宅基地 29.91 0.43 23 特殊用地 0.3 0 9 乔木林地 科教文化用地 0 28.19 0.4 24 0.2 10 沟渠 12.09 0.17 25 设施农业地 0.19 0 旱地 11.57 0.17 灌木林地 0.19 0 11 26 12 其他草地 10.26 0.15 27 空闲地 0.09 13 农村道路 5.78 0.08 28 其他园地 0.09 0 机关团体新闻出 14 水工建筑用地 4.27 0.06 29 0.01 0 版用地 其他林地 15 3.35 0.05 合计 7007.76 100

(2) 植被分布

根据现场踏勘和土地利用现状分析可知,项目周边主要为坑塘水面、沿海滩涂、养殖坑塘、红树林地和水域,主要植被为无瓣海桑、白骨壤、桐花树、红海榄等红树、海漆、黄槿、苦郎树和阔苞菊等半红树为主。

根据本地调查资料和现场踏勘可知,项目陆域区域内没有发现国家重点保护的珍稀濒危植物,项目陆域工程毗邻多个乡村,沿岸水产养殖等人为活动长期、

频繁的干扰,沿岸自然陆生植被基本已消失殆尽,残存的陆生植被群落主要分布 在堤岸、道路两旁,组成上基本以常见的城镇杂草为主,乔木、灌木零散分布, 主要植被类型为灌草丛。

灌草丛是指以中生或旱中生多年生草本植物为主要建群种,但其中散生灌木的植被群落。灌草丛主要沿养殖塘道路成片分布,群落物种组成丰富。其中草本层一般高约 0.3-0.5m,主要以华南地区常见蔓生性野草为主,白花鬼针草、象草、狗牙根等,有时群落内会偶见几株乔木零散分布。

(3) 动物

据走访调查,项目陆域区域内以两栖类、爬行类、鸟类为主,发现珍稀濒危 鸟类 1 种,为红颈滨鹬。

项目全部位于广东湛江红树林国家级自然保护区内,可能会有其他珍稀和重点保护的鸟类出现项目区域内,无其他珍稀濒危动物分布。

6 施工期环境影响预测与评价

6.1 海洋水文动力环境影响预测与评价

6.1.1 潮流数学模型

采用《海洋工程环境影响评价技术导则》(GB/T19485-2014)、《地面水环境影响评价技术导则》(HJ/T 2.3-2018)的推荐,水环境影响预测模式选垂向平均二维数学模型来进行模拟计算。

(1) 控制方程

二维垂向平均潮流模型:

$$\frac{\partial \zeta}{\partial t} + \frac{\partial Hu}{\partial x} + \frac{\partial Hv}{\partial y} = \frac{Q}{\partial x \partial y}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv + g \frac{\partial \zeta}{\partial x} - A_M \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\tau_x}{\rho H} + g \frac{u \sqrt{u^2 + v^2}}{c_S^2 H} = 0$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial \zeta}{\partial y} - A_M \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\tau_y}{\rho H} + g \frac{v \sqrt{u^2 + v^2}}{c_S^2 H} = 0$$

$$H = h + \zeta -$$
 总水深

h一平均海平面下水深(m)

ζ-海平面起算潮位 (m)

u-x 方向(东方向)垂线平均流速(m/s)

v-y方向(北方向)垂线平均流速(m/s)

Q一源强输入流量(m^3/s)

f一科氏参数, $f = 2\omega \sin N$

 A_M 一水平湍流粘滞系数,取 $25m^2/s$

CS-谢才系数, $C_S = \frac{1}{n}H^{\frac{1}{6}}$,曼宁系数n = 0.022。

 τ_{ax} , τ_{ay} 为海表风应力 τ_a 在 x, y 轴方向的分量, τ_a 表达式为:

$$\overline{\tau}_a = \rho_a C_D | \overline{W}_a | \overline{W}_a$$

其中, \overrightarrow{W}_a 为风速 (m/s), ρ_a 为空气密度, C_D 为风拖曳系数,

$$C_D = \begin{cases} 1.2 \times 10^{-3} & |\overrightarrow{W}_a| \le 11 \text{ (m/s)} \\ (0.49 + 0.065 |\overrightarrow{W}_a|) \times 10^{-3} & 11 < |\overrightarrow{W}_a| \le 25 \text{ (m/s)} \\ 2.1 \times 10^{-3} & |\overrightarrow{W}_a| > 25 \text{ (m/s)} \end{cases}$$

(2) 初始条件: 初始速度场,水位场(开边界除外)均为 0。

初始条件:初始速度场,潮位场(开边界除外)均为零,即

$$\eta(x, y, 0) = 0$$
$$u(x, y, 0) = 0$$
$$v(x, y, 0) = 0$$

(3) 边界条件

固边界条件:流的法向分量恒为零, $\bar{V}(x,y,t)=0$ 。

开边界条件: 开边界采用 11 个分潮调和常数计算潮位,式中, n 为平均潮位, A 为分潮振幅, $^\omega$ 为分潮角速率, f 为交点因子, t 是区时, $^{(V_0+V_0)}$ 是平衡潮展开分潮的区时初相角, $^\phi$ 为区时迟角。

$$\eta = \eta_0 + \sum_{i=1}^{11} A_i f_i \cos(w_i t + (V_0 + u_0) - \varphi_i)$$

河口开边界采用根据《广东省湛江市流域综合规划修编报告》的径流控制,根据验证数据拟采用丰水期的径流边界。

河流名称	流域面积	保证率年量(亿 m³)				
		丰水期	平水期	枯水期		
鉴江	9469	120	76.7	45.5		
遂溪河	1486	16.8	10.6	6.2		

表 6.1.1-1 主要河流不同保证率年径流量表

潮滩区采用干湿动边界处理方法,即涨潮时淹没的海域作为湿边界,退潮时露出海面的区域作为干边界。模型计算时 Manning 数取 32, Smagorinsky 公式中的水平涡旋粘滞系数取 0.28, 考虑科氏力的影响,时间步长设为 30s。

(4) 计算范围及网格划分

为拟合项目所在海域复杂岸线及岛屿、防波堤等建筑物边界,计算模式采用非结构三角形网格,并对工程区域进行局部加密,模型计算采用平均海平面。模拟范围及工程海区网格划分见图 6.1.1-1 和图 6.1.1-2。模型水深资料来源于航保部出版的海图水深数据以及工程区域实测水深数据,岸线资料来源于广东省发布

的岸线数据以及工程区域附近实测岸线数据。

根据《湛江经开区红树林湿地生态修复系统治理项目可行性研究报告》,整 个项目营造红树林规模为 683.37 公顷。初步设计中项目分两期建设,其中,一 期占地面积 16.18 公顷, 其中种植红树林 9.87 公顷, 水道 0.95 公顷, 光滩 1.08 公顷,红树林疏林地 4.28 公顷。建设内容包括苗木种植、管护等。二期营造红 树林规模为673.50 公顷,设计内容包括地形改造、苗木种植、管护以及养殖设 计等。工程仅对闸板进行改造,将养殖塘闸板改造为溢流式闸板,闸板顶高程与 红树林种植面标高相同,大潮期间潮水从闸板顶部进入塘内,恢复塘内部分潮汐 特征,退潮时水从闸板顶部溢流,保持塘内水位不高于红树林种植面标高。中小 潮期维持塘内水位以满足养殖用水需求。养殖塘换水时,可打开闸门进行换水操 作,实现水位自动控制。二期项目区地形改造主要通过将养殖水域区域土方开挖 转运或吹填至种植区内,改造种植区高程以适应红树林生长,同时降低养殖水域 区域高程,提高养殖水域水深。种植地块官平整,并避免局部积水过深,更利于 红树植物生长。平面布置上应形成红树林、养殖水域交错的布局。根据现场勘测 高程数据,红树林营造区滩面高程在 1.8~2.0m 之间,地块地势中间高,四周低, 呈微坡趋势,有利于退潮时退水,不积水。营造区周边原生红树林高程分析以营 造区域地块边缘原生红树林分布高程作为营造区高程参照,红树林营造区周边原 生红树林在 1.5~1.8m 之间。根据养殖塘高程和水闸改造,同时满足养殖塘内红 树林生长和养殖需求。根据设计资料,工程区种植区地形整理填高约 0.3m~0.6m。

由于项目对围塘的水利设施改造未改变其自然流向,本项目对水动力影响的是地形微改造。项目区地形改造主要通过将养殖水域区域土方开挖转运或吹填至种植区内,改造种植区高程以适应红树林生长,同时降低养殖水域区域高程,提高养殖水域水深。种植地块宜平整,并避免局部积水过深,更利于红树植物生长。根据设计资料改造区域地形,种植区高程填高约0.3m~0.6m,从满足工程研究需要出发,工程区域的模型采用三角形网格剖分计算域,为了方便比较工程前后的流场变化,在工程前后采用同样的网格,工程后种植区的高程填高0.3m~0.6m。

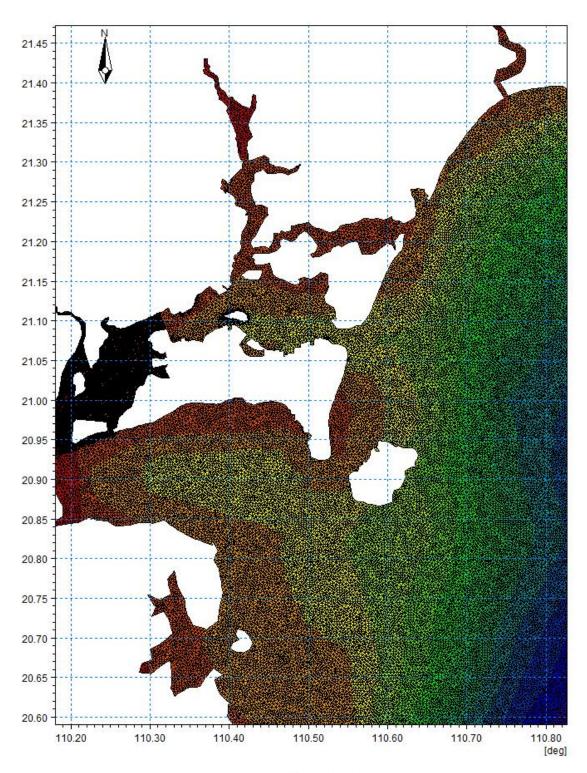


图 6.1.1-1 模型计算范围

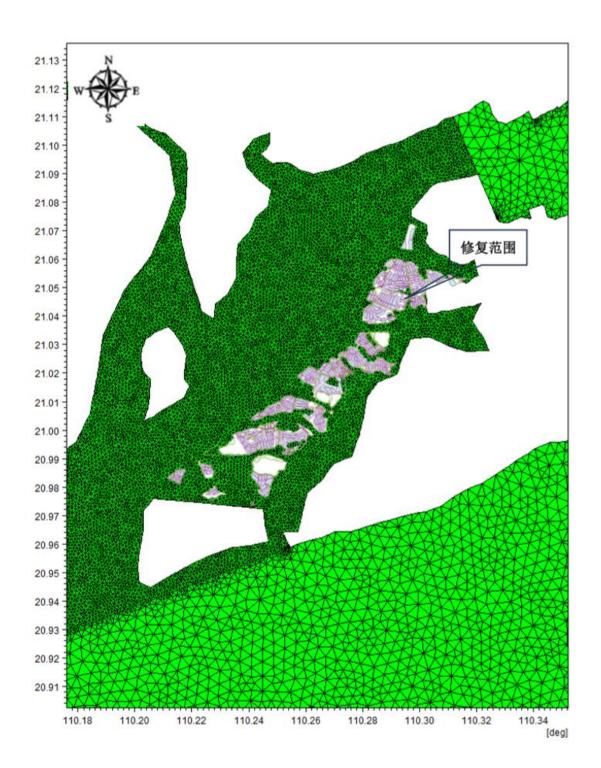


图 6.1.1-2 工程海域计算网格

3、模型验证

模型起算时间为 2023 年 8 月 25 日 00:00, 收集 2023 年 8 月 30 日 0 时~2023 年 8 月 31 日 18 时的逐时海流和潮位观测资料对模型进行验证,其中潮位测点 2 个,分别为 ZJC1、ZJC2,潮流测点 9 个,分别为 ZJL3、ZJL4、ZJL6、ZJL8。验证图中以 2023 年 8 月 30 日 0:00 为验证的零点,水位基准面均换算为

在平均海面下 1.99m。

计算流速值与实测流速值基本吻合,符合涨落潮变化趋势,潮位误差控制在 ±10cm 以内,而且流态也较为合理,基本上能反映出海域潮流状况,可以作为 进一步分析计算的基础资料。从模型验证结果来看,无论是流速流向、还是流场 结构,本次模型计算与原体实测值基本吻合。由此可以认为在现有资料情况下, 本次模型计算已经很好的反映了计算水域的潮流运动特征,模型计算流场与原体 流场基本相似,可用于本项目后续潮流及水质模拟计算。

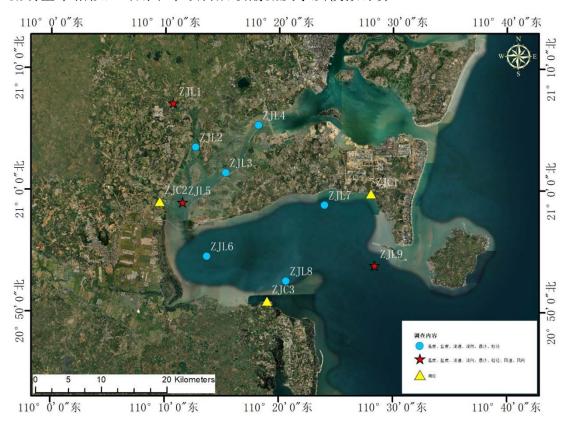


图 6.1.1-3 潮流潮位测流站点位置分布

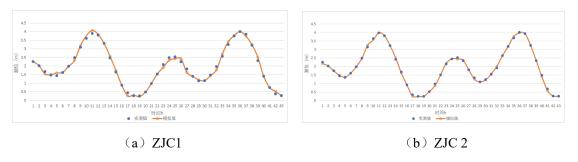


图 6.1.1-4 潮位验证曲线

图 6.1.1-5 潮流站验证曲线

6.1.2 项目海域潮流场

采用经过验证的潮流数学模型,计算了本工程附近水域的潮流场。图 6.1.2-1~6.1.2-4 为计算域涨急和落急流场图。从海流的流态来看,计算区域表现出了明显的往复流的特征,表现出了全日潮区的潮汐特征,具有明显的周期性;

且越靠近狭窄的通道处的站点流速越大(受到地形的挤压流速变大)。湛江东海岛西南侧海域潮流可能最大流速为 121.8cm/s,的可能最大流速方向以西北为主,水质点可能最大运移距离介于 1488.26m~ 23825.43m之间。表层的余流流速最大,方向主要为西南方向。

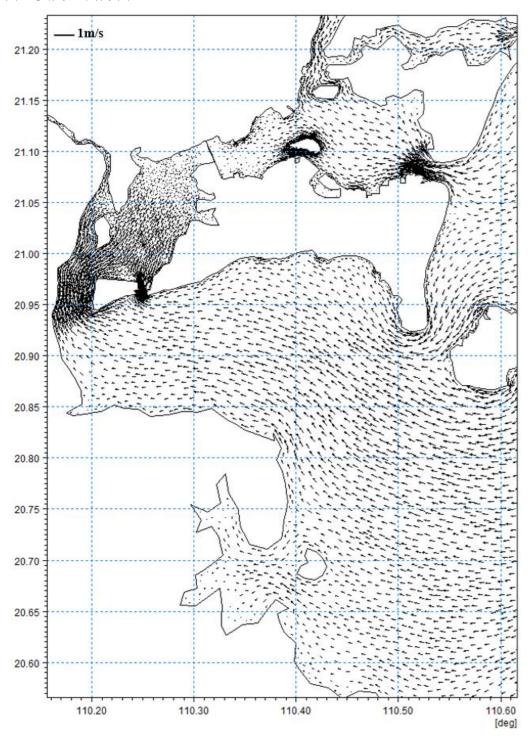


图 6.1.2-1 大区域海域涨急流场图

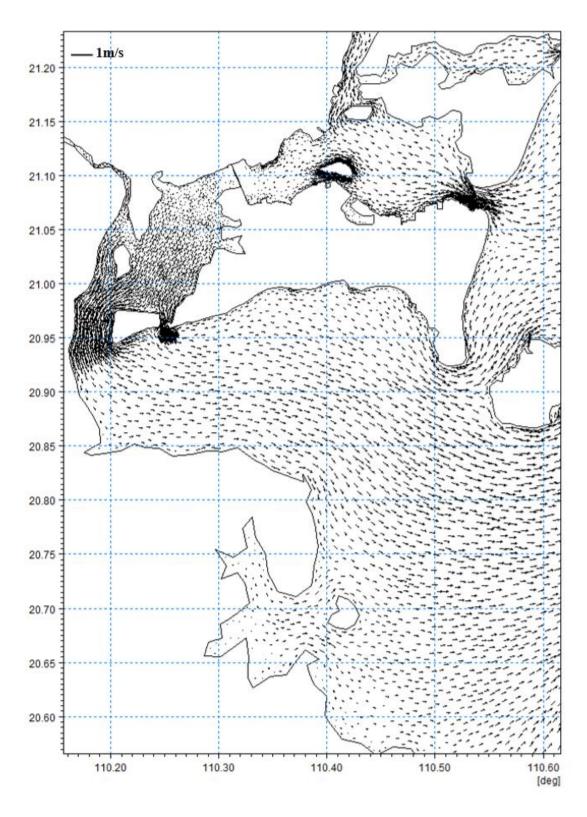


图 6.1.2-2 大区域海域落急流场图

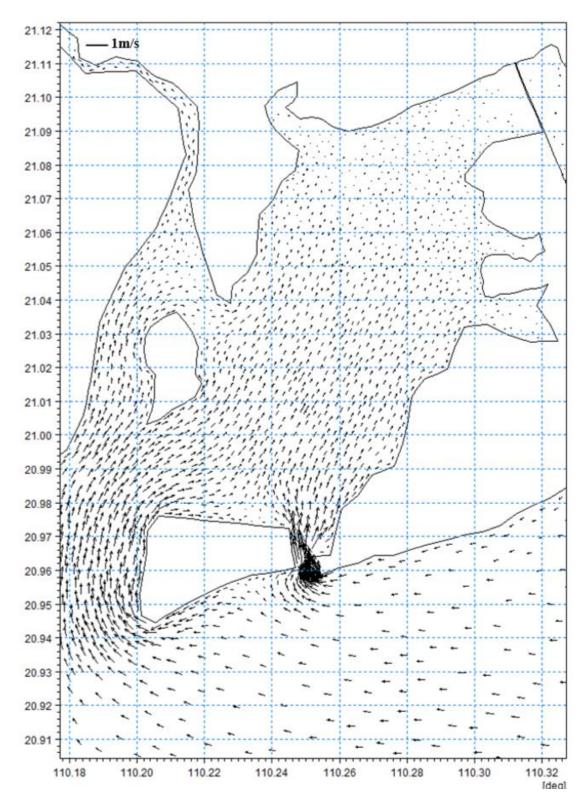


图 6.1.2-3 工程海域涨急流场图

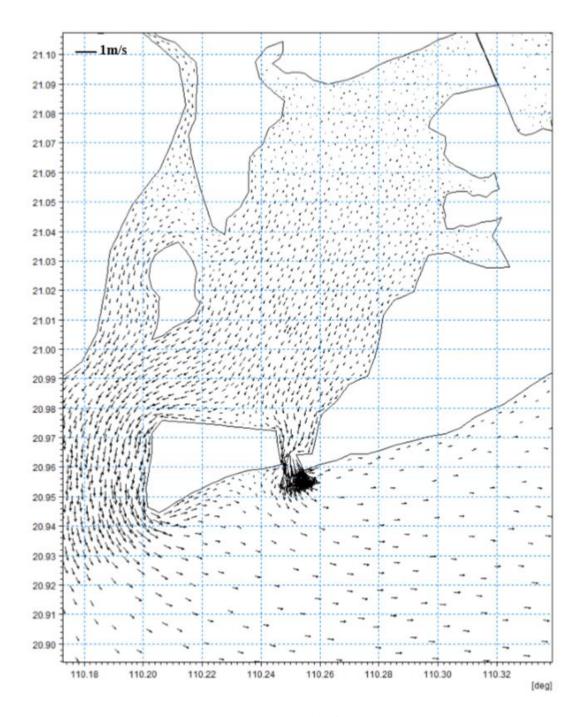


图 6.1.2-4 工程海域落急流场图

6.1.3 工程后水动力环境变化

(1) 流速流向变化分析

根据《湛江经开区红树林湿地生态修复系统治理项目可行性研究报告》,整个项目营造红树林规模为 683.37 公顷。初步设计中项目分两期建设,其中,一期占地面积 16.18 公顷,其中种植红树林 9.87 公顷,水道 0.95 公顷,光滩 1.08 公顷,红树林疏林地 4.28 公顷。建设内容包括苗木种植、管护等。二期营造红

树林规模为 673.50 公顷,设计内容包括地形改造、苗木种植、管护以及养殖设计等。工程仅对闸板进行改造,将养殖塘闸板改造为溢流式闸板,闸板顶高程与红树林种植面标高相同,大潮期间潮水从闸板顶部进入塘内,恢复塘内部分潮汐特征,退潮时水从闸板顶部溢流,保持塘内水位不高于红树林种植面标高。中小潮期维持塘内水位以满足养殖用水需求。养殖塘换水时,可打开闸门进行换水操作,实现水位自动控制。二期项目区地形改造主要通过将养殖水域区域土方开挖转运或吹填至种植区内,改造种植区高程以适应红树林生长,同时降低养殖水域区域高程,提高养殖水域水深。种植地块宜平整,并避免局部积水过深,更利于红树植物生长。平面布置上应形成红树林、养殖水域交错的布局。根据现场勘测高程数据,红树林营造区滩面高程在 1.8~2.0m 之间,地块地势中间高,四周低,呈微坡趋势,有利于退潮时退水,不积水。营造区周边原生红树林高程分析以营造区域地块边缘原生红树林分布高程作为营造区高程参照,红树林营造区周边原生红树林在 1.5~1.8m 之间。根据养殖塘高程和水闸改造,同时满足养殖塘内红树林生长和养殖需求。根据设计资料,工程区种植区地形整理填高约 0.3m~0.6m。

由于项目对围塘的水利设施改造未改变其自然流向,本项目对水动力影响的是地形微改造。项目区地形改造主要通过将养殖水域区域土方开挖转运或吹填至种植区内,改造种植区高程以适应红树林生长,同时降低养殖水域区域高程,提高养殖水域水深。种植地块宜平整,并避免局部积水过深,更利于红树植物生长。根据设计资料改造区域地形,种植区高程填高约 0.3m~0.6m。项目实施改变了局部水深条件,由此带来周边水动力条件的变化,对流场和流速流向均产生影响。通过模拟方法分析项目前后水动力特征要素,以体现项目对水动力的影响范围和强度。为了更加清楚地说明项目对水动力的影响程度,通过在项目周边布设 13个代表点来统计其水动力特征的变化。

结果显示:项目实施后项目区域流速略有减少,项目区域外潮流变化较小,对平面流态的影响较小,流速、流向变化较大的采样点局限于项目附近,变化幅度随着与项目距离的增大迅速减小。总体来说,项目区域流速变化不大,项目区外潮流基本无影响。

图 6.1.3-1 代表点位置图

表 6.1.3-1 潮流代表点流速和流向对比(流速: m/s,流向:°)

华丰上 层		涨急流速	<u>f</u> (m/s)			涨急流	向 (°)			落急流遠	₹ (m/s)			落急流	向 (°)	
代表点位	项目前	项目后	变化值	变化率	项目前	项目后	变化值	变化率	项目前	项目后	变化值	变化率	项目前	项目后	变化值	变化率
1	0.19	0.18	-0.01	-5.26%	66	61	-5	-7.58%	0.20	0.19	-0.01	-5.00%	223	226	3	1.35%
2	0.22	0.22	0.00	0.00%	52	54	2	3.85%	0.23	0.22	-0.01	-4.35%	225	226	1	0.44%
3	0.40	0.39	-0.01	-2.50%	53	50	-3	-5.66%	0.38	0.37	-0.01	-2.63%	213	223	10	4.69%
4	0.36	0.35	-0.01	-2.78%	40	42	2	5.00%	0.46	0.46	0.00	0.00%	214	224	10	4.67%
5	0.37	0.37	0.00	0.00%	23	23	0	0.00%	0.59	0.58	-0.01	-1.69%	224	225	1	0.45%
6	0.47	0.46	-0.01	-2.13%	56	58	2	3.57%	0.87	0.88	0.01	1.15%	243	241	-2	-0.82%
7	0.52	0.53	0.01	1.92%	46	46	0	0.00%	0.98	0.94	-0.04	-4.08%	246	244	-2	-0.81%
8	0.14	0.14	0.00	0.00%	58	55	-3	-5.17%	0.14	0.14	0.00	0.00%	214	215	1	0.47%
9	0.23	0.23	0.00	0.00%	67	68	1	1.49%	0.30	0.30	0.00	0.00%	206	211	5	2.43%
10	0.32	0.32	0.00	0.00%	67	67	0	0.00%	0.31	0.31	0.00	0.00%	216	221	5	2.31%
11	0.37	0.37	0.00	0.00%	53	52	-1	-1.89%	0.37	0.37	0.00	0.00%	211	211	0	0.00%
12	0.40	0.41	0.01	2.50%	52	52	0	0.00%	0.88	0.88	0.00	0.00%	233	232	-1	-0.43%
13	0.61	0.61	0.00	0.00%	32	32	0	0.00%	1.02	1.02	0.00	0.00%	245	245	0	0.00%

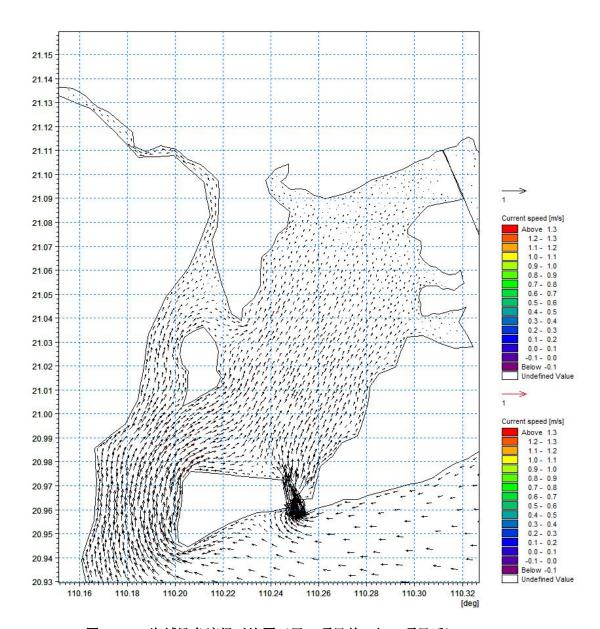


图 6.1.3-2 海域涨急流场对比图 (黑:项目前,红:项目后)

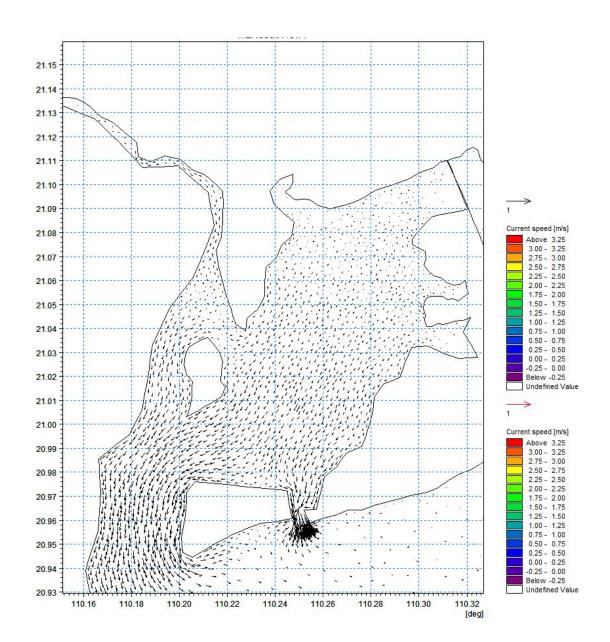


图 6.1.3-3 海域落急流场对比图 (黑:项目前,红:项目后)

(2) 周边海域断面潮量变化

纳潮量是表征半封闭海湾生命力的重要指标,它的改变时海湾潮流特征变化的总体反映,会对海湾的输沙量、水交换能力以及环境容量产生直接的影响。本文分别以涨落半潮通过典型断面的通量来计算纳潮量,其计算公式为:

$$Q = \int_{t1}^{t2} (Q_u + Q_v) dt$$

lu、lv分别为网格的东西向和南北向宽度,Qu和Qv分别为单位时间内通过断面的东西和南北向水通量,tl和t2分别时涨潮和落潮开始和结束的时间,得到Q即为一个涨潮或落潮内通过一断面的水通量。

项目实施前后断面通量变化如表 6.1.3-2,项目实施后,湾内的红树林大潮涨潮、落潮断面潮通量比项目前略微减小,减小幅度在 0.02%~0.04%,变化幅度极小,潮量的减少,会稍微增加湾内水交换周期和降低水交换率,对湾内的水交换产生不利影响,使得湾内水体交换周期稍微增长,水体交换能力降低,将会对湾内的污染物衰减扩散产生一定的减弱作用,但项目的实施对红树林的生产条件有利。由于现有的红树林生态修复项目缺少工程后的观测资料,其定性分析结果为造林区对潮流影响主要是改变海床水深,同时红树林种植也对水流产生一定的阻挡,潮波往湾内上朔的速度将减缓,纳潮量略有减少。为进一步了解项目完成后对周围海域水质的影响,建议在项目施工完成后做持续的海洋环境跟踪监测。

表 6.1.3-2 项目前后计算断面潮量变化表

料品面	涨潮水通量(m³)				落潮水通量 (m³)			
断面	工程前	工程后	变化值	变化率	工程前	工程后	变化值	变化率
典型断面	4.92E+09	4.92E+09	-2.00E+06	-0.04%	5.10E+09	5.10E+09	-1.00E+06	-0.02%

图 6.1.3-4 断面位置

(3) 水体交换周期

对水体交换程度的模拟采用示踪剂法,即在水域内部设置溶解态无降解守恒物质,并考察其在潮流动力作用下的浓度扩散情况。示踪剂输运采用基于欧拉物质输运的对流扩散方程形式,见下式:

$$\frac{\partial hC}{\partial t} + \frac{\partial huC}{\partial x} + \frac{\partial hvC}{\partial y} = \frac{\partial}{\partial x} \left(hD_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(hD_y \frac{\partial C}{\partial y} \right) - FhC + S$$

其中 C 为物质浓度,Dx 和 Dy 分别为 x、y 方向的物质扩散系数;F 为物质衰减系数,保守物质取 F=0;S 为点源浓度,本次研究中设为 0。

目前对水体交换常用的数值模拟手段是基于欧拉法的示踪剂浓度统计,其原理为在研究水域内设置溶解性的守恒物质,该物质将随水体携带,且无降解。因此,守恒物质的对流与扩散直接反映了水体的运动形式。由于项目区域处于潮滩地带,基于以上考虑,本研究于项目区域外沿海域布置初始浓度为1的守恒性物质,其余以外的水域物质浓度设置为0。为充分了解方案实施后的水体交换情况,由于

采用守恒物质,衰减系数取 F=0,点源浓度设置 S=0。物质扩散系数取为与水流紊动粘性系数相等,即 T=1.0。经一定的时间过程后,自湾内扩散至港外的物质总量占湾内初始物质总量的百分比即为水体交换率,统计计算表达式见下式:

$$EX(t_{j}) = 1 - \left(\frac{\sum_{i=1}^{N} C_{i}(t_{j}) D_{i}(t_{j})}{\sum_{i=1}^{N} C_{i}(t_{0}) D_{i}(t_{0})} \right) \times 100\%$$

其中: EX 为水体交换率; C 为物质浓度; D 为总水深; i 为统计域内的节点编号; N 为统计域内的节点总数; j 为时刻编号。

项目实施后,示踪物浓度下降稍微减弱,但程度较低,说明区域水体交换能力减弱程度较低。

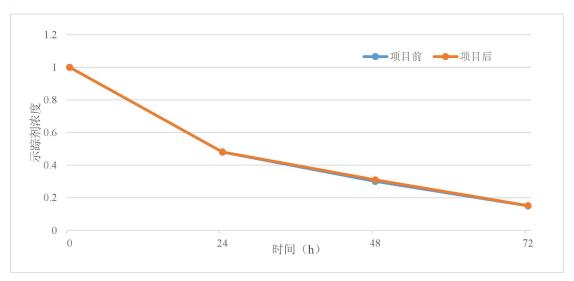
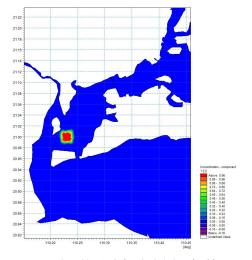
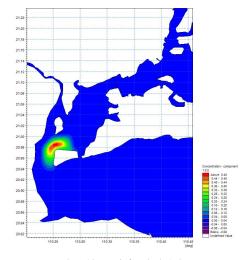




图 6.1.3-5 项目前后示踪物浓度变化对比图

(a) 项目前示踪剂分布图(初始)

(b) 项目前示踪剂分布图 (24h)

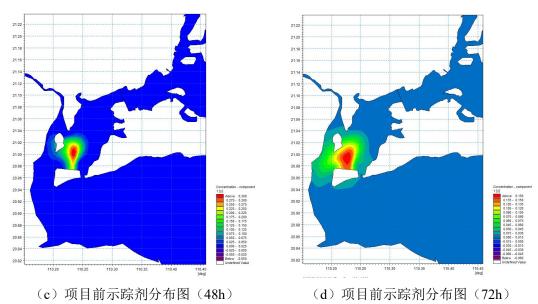
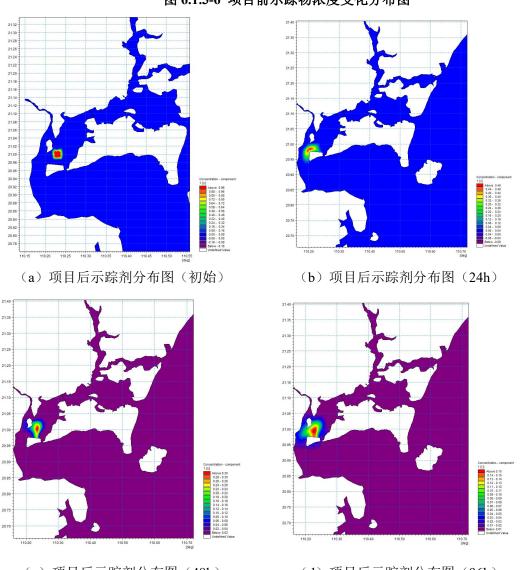



图 6.1.3-6 项目前示踪物浓度变化分布图

(c)项目后示踪剂分布图(48h)

(d) 项目后示踪剂分布图 (96h)

图 6.1.3-7 项目后示踪物浓度变化分布图

6.2 海洋地形地貌与冲淤环境影响分析

由于项目对围塘的水利设施改造未改变其自然流向,本项目对水动力影响的是地形微改造。项目区地形改造主要通过将养殖水域区域土方开挖转运或吹填至种植区内,改造种植区高程以适应红树林生长,同时降低养殖水域区域高程,提高养殖水域水深。种植地块宜平整,并避免局部积水过深,更利于红树植物生长。根据设计资料改造区域地形,种植区高程填高约0.3m~0.6m。项目实施改变了局部水深条件,由此带来周边水动力条件的变化,对流场和流速流向均产生影响。

从潮流模型计算结果分析可知,项目实施对流态的影响主要在项目附近海域, 而对离项目区较远的海域流态影响较小。因此,可初步分析认为项目区附近水域 有一定的冲淤变化,项目远区冲淤影响较小。为进一步确定项目实施对周围海域 冲淤变化的影响,采用由动力场变化引起的半经验半理论公式进行冲淤估算。

为了定量地研究本项目及邻近海区的项目完成后附近海域底床冲淤情况,在 完成潮流数值计算以后,对于泥沙的淤积影响采用如下公式进行计算:

$$p = \frac{\alpha swt}{\gamma_d} \left[1 - \left(\frac{V2}{V1} \right)^{2m} \right]$$

其中, α 为沉降几率,取 0.67; t 为年淤积历时,单位取秒(s); s 为平均含沙量,单位: kg/m^3 ,泥沙平均含量为 $0.015kg/m^3$; ω 为泥沙沉降速度(cm/s),根据有关试验泥沙沉速的取值: ω =0.035cm/s~0.050cm/s,这里取 0.05cm/s; 为泥沙干比重,按照 γ_d =1750× D_{50} 0.183,单位为 kg/m^3 ,取 686 kg/m^3 ; V1、V2 数值计算规划实施前后全潮平均流速,单位 m/s; m 根据当地的流速与含沙量的关系近似取作 1。

本工程位于通明海,大部分处于浅滩,天然水深较浅,多年以来,工程区附近的海床基本稳定,以微淤为主,项目实施后抬高海床,水深变强,存在局部淤积,淤积强度在0.005~0.01m/a,根据现有观测资料,红树林区域为促淤区域,工程后修复区域逐步淤积。

6.3 海水水质环境影响预测与评价

本项目工程内容主要有造林区域填土与平整、高程改造,施工期间扰动海床导致水体悬浮物浓度升高,悬浮泥沙随落潮流扩散,影响附近海域外浮游生物、鱼类等水生生物的活动和繁殖,给渔业资源造成一定程度的损失。根据《海洋工程环境影响评价技术导则》(19485-2014)附录 D,本节采用二维泥沙模型预测施工期间所产生的悬沙对海水水质环境的影响。

6.3.1 模型介绍

采用二维泥沙模式预测施工期悬浮泥沙随流输运扩散:

$$\frac{\partial HS}{\partial t} + \frac{\partial uHS}{\partial x} + \frac{\partial vHS}{\partial y} = \frac{\partial}{\partial x} (HA_h \frac{\partial S}{\partial x}) + \frac{\partial}{\partial y} (HA_h \frac{\partial S}{\partial y}) + F_S$$

H 为总水深, \mathbf{u} 、 \mathbf{v} 分别为 \mathbf{x} 、 \mathbf{y} 方向上的流速, \mathbf{S} 为水体悬沙, F_S 为源汇函数, A_h 为水平扩散系数,采用欧拉公式:

$$A_{hx} = 5.93\sqrt{g}H|u|/C_S \qquad A_{hy} = 5.93\sqrt{g}H|v|/C_S$$

泥沙源汇函数按下面方法确定: $F_S = S_C + Q_d$

 S_c 为输入源强, Q_d 为悬沙与海床交换通量;

底部切应力计算公式: $\tau = \rho f_h UU$

当
$$\tau \leq \tau_d$$
 时,水中泥沙处于落淤状态,则: $Q_d = \alpha \omega_s S(1 - \frac{\tau}{\tau_d})$

当 $\tau_d < \tau < \tau_e$ 时,海底处于不冲不淤状态,则: $Q_d = 0$

当
$$\tau \geq \tau_e$$
时,海底泥沙处于起动状态,则: $Q_d = -M(\frac{\tau}{\tau_e} - 1)$

以上各式中: ω 为泥沙沉降速度,S 为水体含沙量, α 为沉降几率, τ_d 为临界淤积切应力, τ_a 为临界冲刷切应力,M 为冲刷系数。

悬浮泥沙沉降速度采用张瑞谨(1998)提出的泥沙沉降速度的通用公式:

$$\omega_{s} = \sqrt{(13.95 \frac{v}{d_{s}})^{2} + 1.09 \frac{\gamma_{s} - \gamma}{\gamma} g d_{s} - 13.95 \frac{v}{d_{s}}}$$

其中: γ 、 γ_s 分别为水、泥沙的容重, d_s 为悬浮泥沙的中值粒径,v为黏滞系数。工程海域水体悬移质的中值粒径一般为 $0.002\sim0.017$ mm。结合区域监测报告,本项目典型粒径为 0.008mm。

临界淤积切应力 τ_d ,采用窦国仁(1999)提出的计算公式:

$$\tau_d = \rho f_b V_d V_d$$

临界淤积流速,其中 k=0.26:

$$V_d = k \left(\ln 1 \, 1 \, \frac{h}{\Delta} \right) \left(\frac{d'}{d_*} \right)^{1/3} \sqrt{3.6 \frac{r_s - r}{r} g d},$$

Ve 为泥沙悬扬临界流速, 其中 k=0.41:

$$V_e = k \left(\ln 11 \frac{h}{\Delta} \right) \left(\frac{d'}{d_*} \right)^{1/3} \sqrt{3.6 \frac{r_s - r}{r} g d + \left(\frac{r_o}{r_*} \right)^{5/2} \frac{\varepsilon + g \delta h (\delta/d)^{1/2}}{d}}$$

上两公式中其他各参数取值为: g=981cm/s², 当泥沙粒径 d<0.05cm, 床面糙率 $\Delta=0.1$ cm, d'=0.05cm, $d_*=1.0$ cm, 泥沙粘结系数 $\varepsilon=1.75$ cm³/s², 薄膜水厚度参数 $\delta=2.31\times10^{-5}$ cm, h 水深(cm), r_o 床面泥沙干容重(g/cm^3), r_* 床面泥沙稳定干容重(g/cm^3), 泥沙容重 $r_s=2.65$ g/cm³, 海水容重 $r_s=1.025$ g/cm³。

模式计算 V_d 取值 0.13m/s,仅考虑悬浮泥沙增量,泥沙从海床悬扬临界流速取较大值,Ve=0.8m/s,即床面泥沙不能悬扬。

岸界固定边界条件: $\frac{\partial C}{\partial n} = 0$ \vec{n} 为岸界法线方向

开边界的边界条件:

出流时 $\frac{\partial c}{\partial t} + U_n \frac{\partial c}{\partial t} = 0$ Un 为边界法向流速

网格与方程求解同小区水动力方程,采用迎风格式求解方程。

6.3.2 源强及预测方案

根据工程概况与施工进度分析,本项目施工期主要环境影响为造林区挖土与平整、高程微改造。项目挖土最多投入5台水陆挖掘机(2方斗)、1艘绞吸式挖泥船(2000m³/h)施工,绞吸式挖泥船源强为0.7kg/s、挖泥源强0.33kg/s。项目施工范围较大,模拟计算按最不利环境影响方式考虑,叠加其施工源强。按照工程区域分布,概化为15个代表点位进行预测。

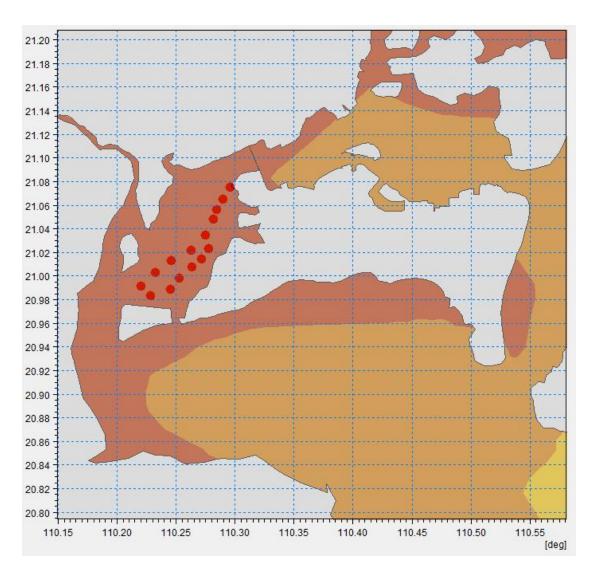


图 6.3.2-1 工程区域施工代表点位示意图

6.3.3 预测结果

潮流是悬浮物输运、扩散的"载体",施工产生的悬浮物除因自身重力发生沉降外,主要受潮流作用,进行输运、稀释和扩散。悬浮物计算时,首先进行水动力场计算,然后再施加悬浮物源强,计算出模拟时段内各计算网格点的悬浮物增量浓度,最后统计各计算网格点在模拟时段内的悬浮物增量浓度最大值,利用各网格点的最大值绘制出悬浮物增量浓度包络线图。

综合分析红树林修复工程作业环节产生悬浮物对水环境的影响,对工程范围 内各代表性位置进行悬浮物影响进行计算,综合作业产生悬浮物影响范围,得到 施工期悬浮物最大可能影响范围。

根据上述模拟结果,工程施工产生的悬沙主要分布在施工区周边海域,悬沙

浓度大于 10mg/L 的包络线面积在 8.411km²内。由悬浮物最大浓度包络线可知,产生的悬浮物扩散核心区仅限于施工区附近。由于施工时间较短,影响范围有限,所产生的影响是暂时和局部的,加之悬浮泥沙具有一定的沉降性能,随着施工作业的结束,悬浮泥沙将慢慢沉降,工程海区的水质会逐渐恢复原有的水平。

表 6.3.3-1 悬浮物增量包络线面积(km²)

悬沙物浓度						
>150mg/L	>100mg/L	>50mg/L	>20mg/L	>10mg/L		
0.080	0.210	3.110	5.350	8.411		

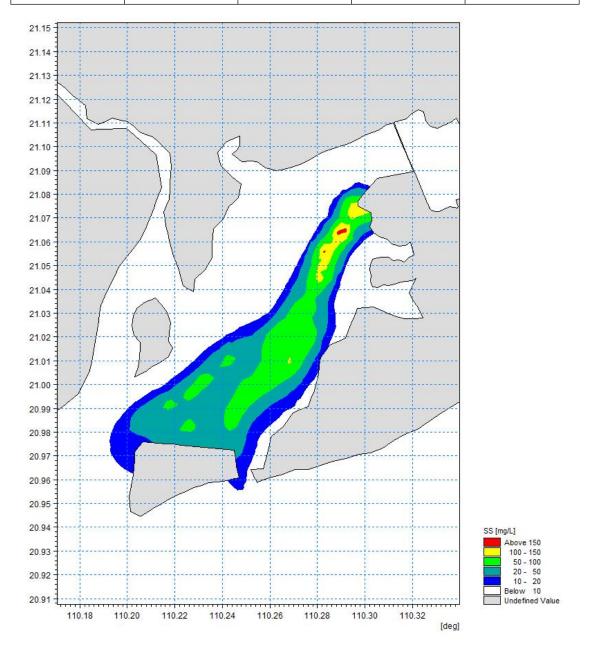


图 6.3.3-1 施工悬浮物增量典型包络线

6.4 对沉积物环境的影响

6.4.1 施工悬浮泥沙对沉积物的环境影响分析

项目施工会使表层沉积物特征受到破坏,但经过一段时间可重新建立起沉积物特征。泥沙的扩散除了自身的沉降外,主要受到潮流的输运作用影响。根据预测,仅按悬浮泥沙浓度>10mg/L 的区域会对海底沉积物造成影响计算,项目滩涂高程改造产生的悬浮泥沙超 I、II 类水质(>10mg/L)面积为 8.411km²,超 III 类水质(>100mg/L)面积为 8.411km²,超 III 类水质(>100mg/L)面积为 0.210km²。本项目在遵循"减少工程量、降低扰动、最低成本"的原则,设计高程改造方案,在整个项目区和单个养殖塘内均实现土方平衡,无客土输入和跨塘的沉积物搬运。高程改造工程会对原有土壤和沉积物产生翻动和扰动,改变原有沉积物质的垂直结构和水平分布,但经过一段时间沉积后可恢复到原有结构。此外,项目施工(滩涂高程改造)对沉积物的影响时间是短暂的,一旦施工完毕,这种影响在较短的时间内也就结束。因此,工程施工过程产生的悬浮物扩散和沉降后,沉积物的环境质量不会产生较大变化,仍将基本保持现有水平。

6.4.2 施工阶段污染物排放对沉积物环境的影响分析

施工期所产生的污染物均经过处理,不直接在工程区域排放,不会对工程海域的沉积物环境产生影响。总体来说,项目实施对沉积物环境影响不大。

6.5 海洋生态和生物资源环境影响预测与评价

6.5.1 对潮间带生物和底栖生物的影响

本项目滩涂高程改造工程不可避免对潮间带滩涂和浅海的底栖生物生态环境产生不可逆的影响。主要影响包括以下几个方面:

滩涂高程改造由于施工机械的搅动作用,将破坏滩涂高程改造范围内底栖生物的栖息地和生存环境,移动能力较强的部分生物可能逃离工程区,但绝大部分底栖生物将随着底泥被挖运而受损或消亡,从而导致生物资源损失。

滩涂高程改造使一些生物赖以生存的生境暂时丧失,但施工完成后种植区将 形成新的滩涂底土环境,底栖生物、潮间带生物可重新形成生态系统。

6.5.2 对浮游生物的影响

项目施工过程不可避免地会使得一部分悬沙进入水体,对项目附近海域的水质环境产生影响。从海洋生态的角度来看,施工海域内局部海水的悬浮物增加,水体透明度下降,从而引起溶解氧降低,对水生生物的生长会产生诸多的负面影响。

1、对浮游植物影响分析

水体悬浮物的增加对浮游植物最直接的影响就是削弱了水体的真光层厚度, 影响浮游植物的光合作用,进而妨碍浮游植物的细胞分裂和生长,降低单位水体 内浮游植物数量,导致局部水域内初级生产力水平降低,使浮游植物生物量有所 降低。

在海洋食物链中,除了初级生产者一浮游藻类以外,其它营养级上的生物既是消费者,也是上一营养级生物的饵料。因此,浮游植物生物量的减少,会使以浮游植物为饵料的浮游动物在单位水体中的生物量也相应减少,致使以这些浮游生物为食的一些鱼类等由于饵料的贫乏而导致资源量下降。而且,以捕食鱼类为生的一些高级消费者,也会由于低营养级生物数量的减少而难以觅食。可见,水体中悬浮物质含量的增加,对整个海洋生态食物链的影响是多环节的。

2、对浮游动物的影响

施工作业引起施工海域内局部海水浑浊,这将使阳光的透射率下降,浮游动物将受到不同程度的影响,尤其是滤食性浮游动物受到的影响较大,这主要是由于施工作业引起的水中悬浮物增加,悬浮颗粒会粘附在动物体表,干扰其正常的生理功能,滤食性浮游动物会吞食适当粒径的悬浮颗粒,造成内部消化系统紊乱。

据有关资料,水中悬浮物质含量的增加,对浮游桡足类动物的存活和繁殖有明显的抑制作用。过量的悬浮物质会堵塞浮游桡足类动物的食物过滤系统和消化器官,尤其在悬浮物含量达到 300mg/L 以上时,这种危害特别明显。在悬浮物质中,又以粘性淤泥的危害最大,泥土及细砂泥次之。

本工程施工期间产生的悬浮泥沙会使周围海水中悬浮物浓度增大,透明度 降低,引起浮游植物的光合作用减少,同样会对浮游植物产生一定的影响和破坏 作用,进而对浮游动物产生一定影响。但是悬浮泥沙排放的时间相对较短,随着 施工作业结束,悬浮泥沙的影响将逐渐减轻。

6.5.3 对鱼类仔鱼的影响

悬浮物浓度增加导致海水水质变差,鱼卵和仔稚鱼将受到悬浮物的影响而死亡。悬浮物对鱼卵的影响很大,水体中若含有过量的悬浮固体,细微颗粒会粘附在鱼卵的表面,妨碍鱼卵呼吸,不利于鱼卵的孵化,从而影响鱼类繁殖。据研究,当悬浮固体物质含量达到 1000mg/L 以上,鱼类的鱼卵能够存活的时间将很短。工程悬浮物对鱼卵仔鱼影响随着施工作业结束,影响将逐渐减轻。

6.5.4 对渔业生产和渔业资源的影响

- 1、施工悬浮泥沙对渔业生产和渔业资源的影响
- (1) 直接导致鱼类和其他水生生物死亡

水中大量存在的悬浮物对生物的毒理危害首先表现为堵塞或破坏海洋生物的呼吸器官,严重损害鳃部的滤水和呼吸功能,从而造成窒息死亡。室内毒性实验表明,前鳞鲻幼鱼在香港维多利亚港疏浚淤泥悬浮液中的中毒症状主要为缺氧窒息,镜检发现幼鱼鳃部不同程度地分布着悬浮微粒从而阻碍其正常呼吸。大颗粒悬浮物在沉降过程中还将直接覆盖底栖生物,如贝类、甲壳类,尤其是它们的稚幼体。长时期的累积覆盖影响将导致底栖生物的减产或死亡。悬浮颗粒粘附在动物体表面,也会干扰其正常的生理功能,滤食性游泳动物及鱼类会吞食适当粒径的悬浮颗粒,造成内部消化系统紊乱。南海水产研究所根据国内外文献资料整理的关于悬浮物对某些水生生物种类的致死浓度和明显影响浓度见表 6.5.4-1。

表 6.5.4-1 悬浮物对海洋生物的致死浓度和明显影响浓度 (mg/L)

14 %	成	体	幼体		
种类	致死浓度	明显影响浓度	致死浓度	明显影响浓度	
鱼类	52000	500	250	125	
虾类	8000	500	400	125	
蟹类	9200	4300	700	125	
贝类	700	500	250	125	

不同的鱼类对悬浮物质含量高低的耐受范围有所区别。据有关的实验数据, 悬浮物质的含量水平为 80000mg/L 时,鱼类最多只能存活一天;含量水平为 6000mg/L 时,最多能存活一周;含量水平为 300mg/L 时,若每天做短时间搅 拌,使沉淀的淤泥泛起,保持悬浮物质含量达到 2300mg/L,则鱼类能存活 3~4 周。通常认为,悬浮物质的含量在 200mg/L 以下及影响较短时,不会导致鱼类直接死亡。但在取土作业点中心区域附近的鱼类,即使高浓度的悬浮物质未能引起死亡,其鳃部也会严重受损,从而影响鱼类今后的存活和生长。

(2) 对鱼类行为的影响分析

鱼类和其他水生生物较易适应水环境的缓慢变化,对环境的急剧变化敏感。 滩涂高程改造工程使作业区和附近海域水体悬浮物含量增加,水体的浑浊度发生 变化,从而导致鱼类和其他游泳动物的行为发生变化,多数鱼类喜爱清水环境而 规避浑浊水域,此外还有作业工程产生的扰动、噪声等干扰因素,施工作业对这 些鱼类动物产生"驱赶效应"。繁殖群体的局部产卵通道同样可能受阻,导致产 卵亲鱼受到干扰、阻碍,从而产生回避反应。

(3) 对鱼类繁殖(鱼卵仔鱼)的影响分析

水体中过高的和细小的悬浮物颗粒会粘附于鱼卵表面,妨碍鱼卵的呼吸,不 利于鱼卵的成活、孵化,从而影响鱼类繁殖。

(4) 减弱海域的饵料基础

水体悬浮颗粒的增加阻碍了光的透射,减弱真光层厚度,影响浮游植物的光合作用,从而使水域的浮游植物量减少、初级生产力下降,以浮游植物为饵料的浮游动物生物量下降,而捕食浮游动物为生的鱼类由于饵料减少,其丰度也会随之下降,掠食鱼类的大型鱼类又因上一级生产者资源下降寻觅不到食物。水体中悬浮物含量增加,对整个水域食物链的影响是多方面的。

2、施工噪声对渔业资源的影响分析

施工过程中由于施工现场机械、船舶作业产生噪声,会惊扰或影响部分仔幼 鱼索饵、栖息活动,但绝大部分可能受到影响的鱼类可以回避。

6.5.5 油污水对海域生态环境的影响

在一定海域范围内,含油污水会给海洋生态环境造成危害。石油块(粒)覆盖生物体表后会影响动物的呼吸和进水系统。石油随悬浮物沉降在潮间带和浅水区后,会使底栖生物的幼虫与孢子失去合适的固着基质,甚至发生严重的化学毒性效应。石油烃会破坏浮游植物细胞,油膜会阻碍海一气交换,影响光合作用。海洋浮游植物石油急性中毒致死浓度为 0.1~10mg/L,浮游动物的石油急性中毒

致死浓度一般在 0.1~15mg/L 之间,不同种类和体积的底栖生物对石油浓度的适应程度有差异,多数底栖生物的石油烃急性中毒致死浓度范围约在 2.0~15mg/L 之间。长期暴露处低浓度含油废水,可影响鱼类的摄食和繁殖,使渔获物产生油臭味而影响其食用价值。

本工程船舶含油污水严格按照《船舶水污染物排放控制标准》(GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位处理。因此只要严格施工管理,正常情况下不会对海域生态环境产生不良影响。

6.6 海域生物资源损耗分析

6.6.1 滩涂高程改造对生物资源损耗分析

滩涂高程改造将覆盖原有滩涂潮间带和底栖生物原有的栖息环境,除少量活动能力强的动物逃往他处外,大部分种类将被挖走、掩埋、覆盖,除少量能够存活外,绝大部分种类将难以存活。施工结束后,滩涂高程改造区将逐渐形成新的生态系统,生物资源逐渐恢复。

参照《建设项目对海洋生物资源影响评价技术规程》(SC/T9110-2007) (简称《规程》),滩涂高程改造彻底破坏了底栖生物的生境,按下述公式进行计算:

$$W_i = D_i \times S_i$$

式中: W_i——第 i 种生物资源受损量,单位为尾或个或千克(kg),在这里指潮间带生物或底栖生物资源受损量。

 D_i ——评估区域内第 i 种生物资源密度,单位为尾(个)/km²、尾(个)/km³、kg/km²。

S_i——第 i 种生物占用的水域面积或体积,单位为平方千米(km²)或立方千米(km³)。此处按本项目挖方涉及的面积计算,项目挖方主要产生在扣除现有红树林及红树林营造区面积,为 786.29hm²。

表 6.6.1-1 2024 年 3 月春季调查资源密度

2024 年	F 3 月	单位	平均值
潮间带生物	平均生物量	g/m ²	24.393
底栖生物	平均密度	g/m ²	4.037

鱼卵	平均密度	*	1.35
仔鱼	平均密度	尾/m³	0
游泳生物	平均资源密度	kg/km ²	627.38

表 6.6.1-2 2023 年 11 月秋季调查资源密度

2023	年 11 月	单位	平均值
潮间带生物	平均生物量	g/m ²	13.007
底栖生物	平均密度	g/m²	13.672
鱼卵	平均密度	米 立/m ³	0
仔鱼	平均密度	尾/m³	0
游泳生物	重量平均资源密度	kg/km²	1447.69

本评价海洋生物密度采用 2023 年11 月秋季与 2024 年 3 月春季调查站位平均值:

表 6.6.1-3 海洋生物资源密度取值情况

类型	平均值
潮间带生物资源密度(g/m²)	18.7
底栖生物资源密度(g/m²)	8.8545
鱼卵生物资源密度(粒/m³)	0.675
仔稚鱼生物资源密度(尾/m³)	0
游泳动物生物资源密度(kg/km²)	1037.535

根据公式,本项目造成底栖生物损失量见表 6.6.1-4。

表 6.6.1-4 海洋生物资源损失量

生物类型	项目	占用面积(hm²)	生物量 (g/m²)	损失量(t)
底栖生物	滩涂高程改造	786.29	8.8545	69.6

6.6.2 悬浮泥沙扩散对生物资源损耗分析

渔业资源主要包括游泳生物(主要为鱼、虾、蟹)和鱼卵仔鱼。对部分游泳生物来讲,悬浮物的影响较显著。悬浮物可粘附在动物身体表面干扰动物的感觉功能,有些粘附甚至可引起动物表皮组织的溃烂;通过动物呼吸,悬浮物可以阻塞鱼类的鳃组织,造成呼吸困难,严重的甚至引起鱼类死亡。根据有关研究资料,水体中悬浮物浓度大于 100mg/L 时,水体浑浊度将比较高,透明度明显降低,若高浓度持续时间较长,将影响水生动、植物的生长,尤其对幼鱼苗的生长有明

显的阻碍,而且可导致死亡。悬浮物对鱼卵的影响也很大,水体中若含有过量的悬浮固体,细微颗粒会粘附在鱼卵的表面,妨碍鱼卵呼吸,不利于鱼卵的孵化,从而影响鱼类繁殖。据研究,当悬浮固体物质含量达到 1000mg/L 以上,鱼类的鱼卵能够存活的时间将很短。

按照《规程》,施工产生的悬浮物在扩散范围内对海洋生物产生持续性损害,按以下公式计算:

$$M_i = W_i \times T$$

式中:

M_i 为第 i 种类生物资源累计损害量,单位为尾(尾)、个(个)、千克(kg);

 W_i 为第 i 种类生物资源一次性平均损失量,单位为尾(尾)、个(个)、 千克(kg);

T 为污染物浓度增量影响的持续周期数(以年实际影响天数除以15),单位为个(个)。

$$W_i = \sum_{i=1}^n D_{ij} \times S_i \times K_{ij}$$

式中:

 W_i 为第 i 种类生物资源一次性平均损失量,单位为尾(尾)、个(个)、 千克(kg);

D_{ij} 为某一污染物第 j 类浓度增量区第 i 种类生物资源密度;

 S_i 为某一污染物第j 类浓度增量区面积;

Kii 为某一污染物第 i 类浓度增量区第 i 种类生物资源损失率;

n 为某一污染物浓度增量分区总数。

根据"6.3.3 预测结果"中悬浮物增量包络线面积,本项目施工工程水域施工悬沙浓度 10-20mg/L 总面积(包含工程区)为 3.061km²; 20-50mg/L 悬浮泥沙最大扩散面积(包含工程区)为 2.240km²; 50-100mg/L 悬浮泥沙面积(包含工程区)为 2.900km²; 大于 100mg/L 悬浮泥沙最大扩散面积(包含工程区)为 0.210km²。参照《规程》中的"污染物对各类生物损失率",施工过程中悬浮泥沙增量超标倍数、超标面积和在区内各类生物损失率如表 6.6.2-1 所示,小

于 10mg/L 增量浓度范围内的海域近似认为悬浮泥沙对海洋生物不产生影响。

表 6.6.2-1 本工程悬浮物对各类生物损失率参数(参照《规程》相关规定)

悬沙增值浓度	污染物 i 的超	扩散面积	各类生物损失率(%)					
(mg/L)	标倍数(Bi)	(km^2)	鱼卵和仔稚鱼	成体	浮游动物	浮游植物		
10~20	Bi≤1 倍	3.061	5	0.5	5	5		
20~50	1 <bi≤4 td="" 倍<=""><td>2.240</td><td>10</td><td>5</td><td>20</td><td>20</td></bi≤4>	2.240	10	5	20	20		
50~100	4 <bi≤9 td="" 倍<=""><td>2.900</td><td>30</td><td>10</td><td>40</td><td>40</td></bi≤9>	2.900	30	10	40	40		
>100	Bi≥9 倍	0.210	50	20	50	50		

注: 1.本表列出污染物 i 的超标倍数 (Bi),指超《渔业水质标准》或超II类《海水水质标准》 的倍数,对标准中未列的污染物,可参考相关标准或按实际污染物种类的毒性试验数据确定; 当多种污染物同时存在,以超标准倍数最大的污染物为评价依据。

2.损失率是指考虑污染物对生物繁殖、生长或造成死亡,以及生物质量下降等影响因素的综合 系数。

3.本表列出的对各类生物损失率作为工程对海洋生物损害评估的参考值。工程产生各类污染物 对海洋生物的损失率可按实际污染物种类,毒性试验数据作相应调整。

4.本表对 pH、溶解氧参数不适用。

本工程滩涂高程改造的场地开挖、回填施工期约为 13 个月。考虑最不利工况取 13 个月施工期,周期为 26 个月;根据工程海域测量资料及项目采取低潮施工,项目建设区悬浮物浓度增量超标范围的平均水深约为 0.5m。鱼卵、仔稚鱼以及游泳生物损失计算的资源密度分别为 0.675 粒/m³,0 尾/m³,1037.5kg/km²。根据前文分析,项目滩涂高程改造施工>100mg/L 悬浮扩散范围为 0.210km²,50~100 mg/L 悬浮扩散范围为 2.900km²,20~50 mg/L 悬浮扩散范围为 2.240km²,10~20 mg/L 悬浮扩散范围为 3.061km²。

由于本项目对浮游生物的影响相对较小,加上浮游生物群落恢复期较短,且目前浮游生物暂无经济价值衡量,在此不考虑浮游生物损失量。

鱼卵损失量: $0.675 \times 0.210 \times 10^6 \times 0.5 \times 0.5 \times 26 + 0.675 \times 2.90 \times 10^6 \times 0.5 \times 0.3$ $\times 26 + 0.675 \times 2.240 \times 10^6 \times 0.5 \times 0.1 \times 26 + 0.675 \times 3.061 \times 10^6 \times 0.5 \times 0.05 \times 26 \approx 1.2$ $\times 10^7$ 粒

游泳生物损失量: 1037.5×10⁻³×0.210×0.5×0.2×26+1037.5×10⁻³×2.900 ×0.5×0.1×26+ 1037.5×10⁻³×2.240×0.5×0.05×26+1037.5×10⁻³×3.061×0.5 ×0.005×26≈6.2t 综上,本项目悬浮泥沙造成鱼卵、游泳生物损失量分别约为 1.2×10⁷ 粒、6.2t。

6.6.3 生物资源损耗赔偿额

潮间带生物和底栖生物按成体生物处理,商品价格按照经济贝类市场价格计算(15元/kg)。

根据当地市场价格,底栖生物按照 1.5 万元/t,游泳生物按照 2 万元/t,鱼苗参考《湛江巴斯夫项目东海岛生态修复渔业增殖放流》询价情况,鱼苗单价 0.45~0.8 元/尾,按 0.8 元/尾进行估算。鱼卵折算成商品鱼苗进行计算,鱼卵生长到商品鱼苗按 1% 成活率计算,则鱼卵损失量可折算成商品鱼苗为 1.2×10⁷×0.01=120000 尾。

各种海洋生物的直接经济损失额见表 6.3.3-1,本工程海洋生物直接经济损失额为 126.4 万元。

按照《规程》,当进行生物资源损害赔偿时,应根据补偿年限对直接经济损失总额进行校正。滩涂高程改造产生的悬浮泥沙对海洋生物产生持续性影响的年限低于 3 年,按 3 年进行补偿;由此计算,本工程造成的生态损失总赔偿额为379.2 万元,由建设单位负责补偿。

补偿年限 经济补偿额 直接经济损失 影响因素 生物资源 直接损失量 单价 额(万元) (年) (万元) 滩涂整地、取土 底栖生物(t) 69.6 15 元/kg 104.4 313.2 游泳生物(t) 6.2 20 元/kg 12.4 37.2 悬浮泥沙 3 鱼卵(粒) 120000 0.8 元/尾 9.6 28.8 合计 126.4 379.2

表 6.6.3-1 海洋生物资源损失汇总及生态赔偿额估算

6.7 对海域生态敏感目标影响分析

项目评价范围内的敏感目标有通明海海洋保护区、南渡河口海洋保护区、广东湛江红树林国家级自然保护区(与通明海海洋保护区重叠)、湛江麻章雷州湾

地方级湿地自然公园、三场一通道(黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区)、雷州湾农渔业区、东海岛南部工业与城镇用海区、国控站位。

6.7.1 对广东省海洋功能区划海洋保护区的影响分析

项目评价范围内的海洋保护区主要有通明海海洋保护区、南渡河口海洋保护区,其中:南渡河口海洋保护区距离项目位置相对较远,项目建设过程中对其影响较小。项目施工(滩涂高程改造工程)产生的悬浮泥沙超 I、II类水质(>10mg/L)面积为 8.411km²,超III类水质(>100mg/L)面积为 0.210km²。

项目位于通明海海洋保护区,根据《广东省海洋功能区划(2011-2020年)》,通明海海洋保护区其相应的海域使用管理要求为: 1.相适宜的海域使用类型为特殊用海; 2.保留湛江国家级红树林保护区通明海片区非核心区内的围海养殖等渔业用海; 3.严格按照国家关于海洋环境保护以及自然保护区管理的法律法规和标准进行管理。海洋环境保护要求为: 1.保护通明海红树林; 2.严格控制养殖污染和水体富营养化,防止外来物种入侵; 3.加强保护区海洋生态环境监测; 4.执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。

本项目作为红树林修复项目,是对湛江红树林国家级自然保护区的修复补充,项目建设对通明海海洋保护区的影响主要为**施工期悬浮泥沙**、含油污水对保护区内水质环境、沉积物环境的影响,项目所在海域水文动力条件较弱,为减小对水质、沉积物环境的影响,项目在低潮时开展施工,减小悬浮泥沙的扩散范围,且项目施工期短,悬浮泥沙在施工结束后可逐渐消除。项目施工期间产生的污染物均得到有效处置,不排海。因此,本项目对通明海海洋保护区的影响较小。

6.7.2 对广东湛江红树林国家级自然保护区的影响

1、对自然保护区的影响

红树林生态系统是一种典型的海岸带湿地生态系统,红树林由于错综复杂的发达根系可以缓冲海浪对海岸的侵蚀,起到防风消浪、固岸护堤的作用;能够阻止海浪带入泥沙,防止底泥再次悬浮,减少悬浮物的产生,同时还可以促使大颗粒物快速沉降并吸附微小悬浮颗粒,减少了悬浮物在水体中的停留时间,保持较好的水质;红树林特殊的生态适应性一胎生、特殊根系、泌盐等,及其底栖生物的作用,使红树林能够有效地去除水中的 N、P、重金属和有机物,具有净

化水体、减少赤潮发生的作用。

本项目保护区修复工程位于广东湛江红树林国家级自然保护区和湛江市麻章雷州湾地方红树林保护区内,本项目作为红树林修复项目,是对广东湛江红树林国家级自然保护区和湛江市麻章雷州湾地方红树林保护区的修复补充,对保护区的影响仅限于施工期。施工期对红树林保护区的影响主要为施工悬浮泥沙等。红树植物具有发达而独特的根系,独特的根系能够网罗泥沙,有很好的固堤护岸的作用。据文献报道红树林对石油污染也有一定的抵抗与净化作用。而且本项目施工期短,施工产生的悬浮泥沙在施工结束后随即消除,施工含油污水通过收集后交由有资质的单位接收处理。因此,本项目用海对项目所在海域的红树林保护区影响很小。

2、对现有红树林的影响

为保证施工条件,对养殖塘水位进行调节,通过降低水位保证高程改造工程的实施。水位降低时间过长会导致现有红树植物长期缺水,影响植物生长发育,甚至会导致死亡。施工期水位控制高度和时间至关重要。塘内水位降低后,为避免红树林缺水,根据每口塘现状红树林分布高程设计了水位控制高程。施工过程中打开闸门放水至设计水位线位置,保持塘内水位在红树林根部以下,并且在每个大潮期间停工一天,打开闸门进行海水交换,在最高潮时关闭闸门,对现有红树林进行淹水,使滩面充分湿润,保证红树林正常生长。在退潮时打开闸门排水至施工期塘内控制水位。

塘内地形改造工程开挖会产生悬浮泥沙,影响红树植物根系与外界进行气体交换,尤其是具有呼吸根的白骨壤植株,因此施工时将塘内水位降至红树林根部以下,可有效阻止悬浮泥沙扩散至红树林根部。地形改造施工如果距离现有红树林太近,会造成植物根系损伤,因此为避免地形改造损伤现有红树植物根系,设计新种植区域和原生红树林的距离大于15m。

通过采取措施,施工期对现有红树林的影响较小。

6.7.3 对"三场一通道"的影响分析

根据《中国海洋渔业水域图(第一批)》,项目涉及"三场一通道"包括黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区。本项目黄花鱼幼苗保护区的保护时间为每年的3月1日至5月31日。根据分析,施工悬浮泥沙会造成悬浮物浓

度增加导致海水水质变差,鱼卵、仔稚鱼、鱼类和其他水生生物将受到悬浮物的影响而死亡,影响鱼类行为与繁殖,减弱海域的饵料基础。施工噪声会惊扰或影响部分仔幼鱼索饵、栖息活动,但绝大部分可能受到影响的鱼类可以回避。由于春夏季是鱼、虾类产卵、仔幼鱼索饵季节,建议施工尽量避开这一季节,无法避开时应采取减缓措施。项目建成后将对施工期造成生物资源损耗进行赔偿,可减轻项目施工对"三场一通道"造成的影响。

6.7.4 对油气管道的影响分析

根据相关法规,在管道线路中心线两侧各 5 米范围内禁止取土、采石、用火、堆放重物、排放腐蚀性物质、使用机械工具进行发掘施工。项目与油气管道的最近距离约为 514m,但项目滩涂高程改造位于围塘内,因此,施工期的滩涂高程改造对油气管道基本无影响。

6.7.5 对养殖活动的影响分析

1、对项目围塘内的渔业影响分析

项目施工前围塘业主已采取清塘措施,塘内游泳生物基本会全部清空。少量的底栖生物由于不在围塘业主的渔获范围,而残存下来。因此,本项目施工过程可能影响的水生生物主要包括底栖生物及鱼卵仔鱼。

项目滩涂改造可能造成的生态损失见本报告"6.6.1滩涂高程改造对生物资源损耗分析";通过采取生态补偿等措施,对施工过程造成的生态损失进行补偿,可将项目对围塘内生态环境的影响降到较低水平。

2、对项目周边的渔业影响分析

根据卫图和现场踏勘可以看出,项目围塘周边分布有大量的开放式渔业养殖设施(鱼排、网箱等)。项目区围塘外水道内存在大量开放式养殖的鱼排,施工期围塘闸门关闭,施工期土方开挖扰动造成的水体污染和机械设备施工噪音仅对施工围塘内部产生影响,不会对围塘外的鱼排产生影响。

运营期,项目与围塘外的海水进行交换;由于项目围塘内的水质在红树林根系的长期的净化作用下,会导致围塘内的海水水质优于围塘外的海水水质;因此,运营期围塘与周边海域通过水闸进行海水交换时,基本不会对周边海域的水质造成负面影响。

6.7.6 对近岸海域国控站位的影响分析

本项目评价范围内有 GDN07015、GDN07035 这 2 个国控站位,由"6.3 海水水质环境影响预测与评价"悬浮泥沙的数值模拟结果可知,本项目施工产生增量>10mgL 的悬浮泥沙最大包络线均不会扩散至附近近岸海域监测国控站位内,悬浮泥沙在 GDN07015 、 GDN07035 站位的最大贡献浓度均小于 10mg/L,满足所在海洋功能区"人为增加量≤10mg/L"的要求,符合海水水质一、二类标准。施工单位应在施工期对悬浮物浓度进行监测,根据监测结果及时调整和控制施工扩散影响。

6.7.7 对珍稀物种的影响分析

项目附近海域珍稀物种主要为中华白海豚。

(1) 中华白海豚的分布情况

中华白海豚(Sousa chinensis)为沿岸河口定栖性小型齿鲸类,属海豚科,白海豚属,1988 年被国务院列为国家一级保护动物。2005 年南京师范大学周开亚团队在湛江东部雷州湾海域进行考察时发现了湛江的中华白海豚种群,湛江市政府于 2007 年建立了雷州湾中华白海豚市级自然保护区。湛江沿岸海域还生活着印太江豚 Neophocaena phocaenoides。

根据南京师范大学于 2014 年 7 月至 2015 年 6 月在新寮岛和外罗以东近岸海域所进行的为期 1 年的调查,共在新寮岛和外罗以东近岸海域发现中华白海豚 125 群次, 目击中华白海豚 1065 头次, 目击的中华白海豚群以 7-10 头居多。共识别 132 头中华白海豚。估算在雷州湾南部新寮岛、外罗附近海域的中华白海豚数量约 583 头。调查期间中华白海豚的分布区域见图 4.2.1-7 所示。

该次调查中华白海豚活动海域的水深为 1.2-15.6m , 70%的活动水域的水深在 8m 以下,大于 8m 的海域绝大部分位于外罗水道中,也就是说约 30%中华白海豚是在水道中发现的。

中华白海豚初始发现位置离海岸垂直距离为 0.3-5.9km 。调查海域中华白海豚的栖息地狭窄且近岸,离海岸垂直距离的最大值是 5.9km。该次调查中华白海豚活动水域的水温为 17.3-29.7℃,盐度范围是 27.8-32.7‰,pH 范围是 7.98-

8.32, 透明度为 0.3-1.7m。

(2) 本项目所在海域的中华白海豚分布情况

由图 4.2.6-1 湛江东部海域中华白海豚活动路线图可知,本项目所在区域通明海海洋保护区不属于中华白海豚活动的主要路线范围。

(3) 对中华白海豚的影响分析

从上世纪 90 年代以来,国内外许多研究表明,施工产生的水下噪声能够造成海洋哺乳动物的听觉损伤;同时噪声也能够掩蔽海洋哺乳动物的水下发声号,对它们的生活栖息造成极大的干扰。受到水下施工噪声影响的海洋哺乳动物可能出现听觉障碍,或被迫放弃在原有海域或栖息地的觅食、繁殖等活动,进而造成其种群生存的更大环境风险。因而,欧美等西方发达国家都已初步建立有关水下施工强噪声的监测与限制的相关体制法规,以保护海洋哺乳动物及鱼类等免遭水下施工强噪声的危害。例如,美国国家海洋渔业机构 (NMFS)颁布的鲸豚类水下噪声的标准阈限值为 180dB。

根据厦门大学许肖梅等研究成果(《厦门北通道公铁两用桥工程水下噪声对中华白海豚及渔业资源环境影响评估报告》,2005年),施工中钢护筒内钻孔、施工船舶作业及航运等施工和海上运输活动将使水下噪声级提高 20dB~30dB,即施工海域的水下噪声可达 110dB~140dB,虽低于上述的鲸类最大可承受声压标准(180dB),但仍会对鲸豚产生行为干扰影响。通常情况下,鲸豚将被迫调整其活动范围,待施工作业完成、干扰减少时,鲸豚将逐渐恢复原来的活动范围。

鉴于项目评价范围内的海域有中华白海豚的活动路线,因此,建议在施工前,应密切注意观察施工船舶周围鲸豚的活动,并设定至少 2km 的安全距离为警告区域,若发现有鲸豚,应暂停施工,采用无害声驱的方法将其驱逐出作业海域,再进行施工作业,船舶施工噪声对鲸豚影响不大。项目施工期悬浮泥沙主要在项目附近海域扩散,基本不会对中华白海豚的活动范围产生影响。在做好上述防护措施的前提下,施工期对中华白海豚的影响在可控的范围之内。

6.7.8 对周边海域利用现状的影响分析

项目位于围塘内,施工前先放水降低围塘内的水位,然后关闭闸口;整个施工期间围塘与塘外海域不发生海水交换,因此基本不会影响距离本项目较远的东海岛南部工业与城镇用海区、雷州湾农渔业区的海洋生态环境。

6.8 大气环境影响分析

本项目产生的大气污染物主要为施工机械与运输车辆产生的尾气(NOx、 SO_2 、烟尘)。

本项目投入的施工机械和运输车辆较少,施工过程中产生的尾气(NOx、SO₂、烟尘)可通过加强管理,采用低硫含量燃油等清洁能源原料等措施,减少废气产生。施工废气对环境空气有一定的影响,但一般仅局限于施工区域,对施工区域以外的环境空气影响较小。且施工机械和运输车辆排放废气属于无组织排放,由于项目位于开阔海面,通风良好。一旦项目施工结束,影响也随之消失。但施工单位在施工过程中还是应该尽量使用低污染排放的设备,日常注意设备的检修和维护,保证设备在正常工况条件下运转,影响不大。

项目运输车辆运输过程中会产生运输扬尘,通过洒水抑尘降低运输扬尘的产生,由于源强较小,影响不大。

6.9 环境噪声影响预测与评价

6.9.1 噪声源强

施工阶段噪声源主要有水陆两用挖掘机、运输货船、绞吸式挖泥船、运输车辆等。本项目主要施工设备的噪声见下表。

序号	设备名称	噪声级 dB(A)	与声源(施工设备)的距离(m)
1	运输汽车	82~90	5
2	水陆挖掘机	80~90	5
3	绞吸式挖泥船	90~100	5
4	运输货船	90~100	5
5	锚艇	90~100	5

表 6.9.1-1 各施工阶段主要噪声源状况

6.9.2 噪声预测

本工程施工产生的噪声大致可分为二类:固定、连续的施工机械设备噪声; 流动式的交通运输噪声。

1、机械噪声

机械噪声源可视为固定噪声源,根据《环境影响评价技术导则一声环境》(HJ 2.4-2021)推荐的点声源噪声衰减模式,在不考虑声屏障、空气吸收等引起的衰减量,仅考虑几何扩散情况下,预测主要施工机械在不同距离处的噪声影响值,预测公式如下:

 $L(r) = L(r_0) - 20Lg(r/r_0)$

式中: L(r) 一预测点处声压级, dB(A);

 $L(r_0)$ —基准点 r_0 处的噪声值,dB(A);

r, r_0 一预测点、基准点的距离,m。

上述设备噪声经公式计算,预测结果见下表:

设备	数量	源强	距离 (m)						
以留	(台)		10	20	50	100	200	300	500
水陆挖掘机	1	85	79.0	73.0	65.0	59.0	53.0	49.4	45.0
	2(最不								
水陆挖掘机	利情	88	82.0	76.0	68.0	62.0	56.0	52.4	48.0
	况)								
绞吸式挖泥船	1	95	89.0	83.0	75.0	69.0	63.0	59.4	55.0

表 6.9.2-1 施工机械噪声衰减计算结果 单位: dB(A)

从上表中可看出,施工期机械设备在 100m 范围处噪声贡献值可削减至 70dB(A)以下,500m 范围处噪声贡献值削减至 55dB(A)及以下。

项目位于红树林保护区内,在靠近现有红树林施工时,施工噪声对红树林将造成不良影响。

为确保施工噪声不会对现有红树林造成不良影响,高噪声声源施工应远离红树林保护区设置,减缓施工噪声对现有红树林的不良影响。

根据《环境影响评价技术导则一声环境(HJ/T2.4-2021)》: "8.5.2 预测和评价建设项目在施工期和运营期厂界(场界、边界)噪声贡献值,评价其超标和达标情况";结合项目平面布置可以看出,项目施工区域距离围塘边界最近距离小于100m,若不采取相关降噪措施,场地边界噪声将超标。

同时,根据《环境影响评价技术导则一声环境(HJ/T2.4-2021)》: "8.5.1 预测建设项目在施工期和运营期所有声环境保护目标处的噪声贡献值和预测值,评价其超标和达标情况"。

项目周边 200m 范围内没有声环境敏感保护目标。因此,施工噪声对外环境

的影响极小。

2 交通噪声影响

本项目施工交通噪声影响主要来自运输车辆、运输船舶,其对道路沿线两侧的噪声影响主要如下:

距离 (m) 设备 源强 10 100 200 300 500 20 50 运输汽车 74.0 86 80.0 66.0 60.0 54.0 50.4 46.0 运输货船 95 89.0 83.0 75.0 69.0 63.0 59.4 55.0

表 6.9.2-2 运输车辆、船舶在不同距离的噪声预测值 单位: dB(A)

根据现场查勘,本工程运输部分路段经过村庄,运输车辆噪声对于道路沿线两侧居民建筑具有一定的影响。

6.9.3 施工期应采取的措施

施工单位应按照相关法律法规的要求做好施工期噪声污染的防治工作,确保施工噪声对周围环境产生的影响降低到较低程度。为尽可能降低项目施工噪声对周围环境及敏感点的影响,必须合理安排施工时间并采取相应的防治措施:

- (1) 合理安排施工时间,制订施工计划时,应尽可能避免大量的高噪声设备同时施工。除此之外,严禁在中午(12:00~14:00)和夜间(22:00~6:00)期间作业,因特殊需要延续施工时间的,必须报有关管理部门批准,施工场界噪声应控制在《建筑施工场界环境噪声排放标准》(GB12523-2011)能施工作业的限值之内。
 - (2) 项目施工时, 高噪声设备尽量远离现有红树林设置。
 - (3) 降低设备声级,设备选型上尽量采用低噪声设备。
- (4)项目施工时应合理规划机械作业时间,加强施工机械使用的选择和管理。
 - (5) 合理安排车辆运输路线,路过建筑密集区域时减速慢行,禁止鸣笛。
 - (6) 加强施工运输车辆维修保养,避免发生突发性事故噪声。

施工单位应按照相关法律法规的要求做好施工期噪声污染的防治工作,使得场界噪声达到《建筑施工场界环境噪声排放标准》(GB12523-2011)要求,确保施工噪声对周围环境产生的影响降低到较低程度。施工期间其噪声影响是短

暂的,一旦施工活动结束,施工噪声也就随之结束。

6.10 固体废弃物影响分析

施工期产生的固体废物主要包括施工人员生活垃圾、残油、废油、滩涂清理杂物。

施工队伍产生生活垃圾在进行定点收集后交由当地环卫部门集中处理。船舶生活垃圾收集后每周上岸交由环卫部门清运。油、废油等危险废物收集后交由专业危废资质单位处理。滩涂清理杂物主要成分为废渔网、废塑料、残枝落叶等,属于一般固废,收集后分拣,可回收部分回收,不可回收部分交由环卫部门清运。

施工期的固体废物排放是暂时的,通过积极有效的施工管理措施,施工期固体废物不会对环境造成不利影响。

6.11 陆域生态、水生环境影响分析

1、对陆域生态环境影响分析

项目无新增临时道路,项目施工营地租用民房,无新增营地占地。项目陆域 无临时和永久占地,对陆域生态环境影响微小。

2、对水生环境影响分析

红树林湿地系统与其他植物湿地系统净化污水的机理相似,是红树林湿地系统中发生的物理、化学、生物学作用的综合过程,红树植物通过自身的生长以及协助湿地内的物理、化学、生物等作用而去除湿地中的污染物质。红树林生态系统可视为低成本高效率的污水处理系统。红树林是一个"红树林-细菌-藻类-浮游动物-鱼类等生物群落"构成的兼有厌氧-需氧的多级净化系统,对工业、生活污水等起有效的净化作用,对污水中的重金属和氮磷营养物等有较强的吸收容纳力,具有处理陆地径流带出的有机物质和含油废水等其他污染物的生态功能。

项目是滩涂高程改造施工会有悬浮泥沙产生。根据上文分析,红树林具有净化水质的作用,项目施工产生的悬浮泥沙,基本不会对现状红树林产生影响不利影响,且项目施工期生活污水、含油污水、固体废物等均得到有效处理,不直接排放,基本不会对现状红树林产生影响。

项目是红树林营造修复项目, 红树林长成后对陆域、水生生态环境具有促进

作用。

6.12 对鸟类的影响分析

湛江红树林国家级自然保护区有鸟类达 194 种,是广东省重要鸟区之一。根据前文鸟类资料现状调查分析,该地区共计调查到的鸟类为 16 科 31 种,其中近危(红颈滨鹬)1种。共记录鸟类 1773 只,以鸻形目为主,数量为 1634 只,占比 92.16%。

本次调查的鸟类主要为各种生境广泛分布的广布种以及多数在湿地活动的湿地依赖种类。湿地鸟类以水生生物为食,主要以鱼、虾、蛙、蝗虫、蝼蛄等水生和陆生昆虫及昆虫幼虫,以及其他小型无脊椎动物或小蛇、蜥蜴等为食。鸟类繁殖期常发生在春季。不论是昼行和夜行鸟类,其对强光均较为敏感。本项目对鸟类的影响主要影响为噪声、废气、废水、固废,具体分析如下:

①噪声影响分析

本项目保护区修复位于湛江红树林国家级自然保护区内,本项目施工机械和船舶的噪声,会导致工程区域内及临近项目施工区域的鸟类栖息环境质量暂时下降,即噪声可能使生活在附近的鸟类受到惊吓,迫使部分鸟类迁徙他处,远离施工范围,从而影响项目附近鸟类种群分布。

项目周边区域的鸟类较多,其中以涉禽类最多,主要分布于项目区的红树林及其滩涂、浅水湿地、河流、水田等环境中,白天活动,夜间多隐蔽于红树林或在高大的乔木或沙地上休息。本次调查,除鹭科留鸟在项目区可见繁殖巢穴外,其余很多种类为越冬冬候鸟。该类群极易受到人为干扰的影响,一般在距离 200m 为该类群的警戒距离,人为干扰接触过近,则直接采取飞翔的方式进行躲避干扰或远离干扰源。因此,该类鸟类在施工期较易找到替代生境,工程对其直接影响不大,只局限于施工期缩减它们的活动范围与生境,施工噪声与废气对生境的污染。但是在鸟类繁殖期时施工噪声可能对其有较大影响。

除涉禽外,还有一些在附近活动的攀禽、游禽,它们多分布在湛江红树林国家级自然保护区、工程附近滩涂,以及项目区周边陆地村庄等处,项目施工噪声可能干扰这些鸟类,将其驱赶到其它水域活动。

合理安排施工期,减少在区域鸟类繁殖、迁徙时期的作业内容,施工要尽量

避开候鸟栖息越冬和鸟类迁徙时间,减缓对鸟类的影响。繁殖季是鸟类最敏感的时期,如果有人为的强烈噪音,它们可能会马上弃巢,故尽量避开繁殖期进行施工。若需在繁殖季进行施工,则尽量将高噪声设备远离鸟类营巢区,并通过选用低噪声设备、做好减震降噪、采用隔声屏障等措施,有效降低施工噪声对鸟类的影响。施工期噪声对附近鸟类资源的是暂时的,随着施工期的结束,鸟类会逐渐回迁,运营期红树林种植完成,红树林生态系统恢复后,红树林里栖息的鸟类将会更多,生物多样性将会更加丰富。

②大气污染影响

施工过程中对大气污染主要来自施工船舶、施工机械、施工车辆的燃油废气。燃油废气有害物主要有:碳氢化合物(HC)、一氧化碳(CO)、氮氧化合物(NO)、一氧化硫及颗粒物质等。鉴于施工使用的船机设备较少,燃油废气产生量相对较小,且排放点分散,项目周边地势开阔、空气流动速度快,在施工过程中所产生的有害气体随海风经过扩散后,燃油废气污染的影响很小,对周边的鸟类影响基本上无影响。

③水污染影响

施工中的水污染源主要来源于两方面:一是海底泥沙悬浮,二是船舶溢油。一方面,项目滩涂高程改造施工增加了所在海域的含沙量,对海洋生物将产生一定的影响,进而对鸟类的觅食造成影响;另一方面,由于操作不当发生船舶碰撞,造成溢油污染。

根据悬浮泥沙预测结果,施工过程中,悬沙增量≥10 mg/L (超一、二类水质标准)的面积为 8.411km²,≥100 mg/L (超三类水质标准)的面积为 0.210km²。总体而言,悬沙影响范围集中在工程周围,项目周边滩涂、海域面积较大,鸟类可以在周边滩涂进行觅食,且这种不良影响是暂时的,随着施工作业结束,悬浮泥沙的影响将逐渐减轻。施工期生活污水经槽车运输进入民安街道污水处理厂处理,施工废水经沉淀后循环利用,生活污水不直接排入,故本项目水污染物对鸟类影响在可接受范围内。

本项目施工期存在人员操作失误发生翻船和周边渔船发生碰撞等事故造成 溢油风险,溢油一旦发生会对区域内的浮游植物、浮游动物、底栖生物、鱼类造 成不利影响。溢油对栖息鸟类的影响主要是对鸟类食物链的影响(鸟类以海藻、 鱼类及其它海洋低等生物为食)、破坏栖息环境、鸟类接触油污后溢油会牢牢粘 附在它的羽毛上影响其飞行能力等。项目溢油通过规范人员操作、周边村庄张贴 施工公告、 配置吸油毡、围网等措施,可有效降低溢油发生风险。

4 固废

生活垃圾交由当地环卫部门统一外运进行处理,船舶生活垃圾收集后每周上岸交由环卫部门清运,施工船舶作业产生的残油、废油等危险废物统一交由有危险废物处理资质的单位将其安全处置。生活垃圾应及时清运,避免栖息鸟类误食生活垃圾。项目施工期产生的固废对鸟类的影响较小。

⑤光污染影响

不论是昼行和夜行鸟类,其对强光均较为敏感,夜间施工产生的光污染会影响栖息在现有红树林鸟类的栖息觅食等行为。

故需要合理安排施工时序,尽量避免夜间施工。如遇需要夜间施工的特殊情况,遵守保护区相关管理规定,制定夜间施工方案,减少光污染对动植物的影响;避免不必要和过强的光照;使用合格的照明设备,如使用亮度适当、只照到需要照亮的区域或对象、防止不需要照亮的地方和对象被动受光的灯具;选择适当的照明方式,采取必要的照明控制,严格控制照明的时间和空间。

⑦对珍稀濒危物种的影响

根据前文鸟类资料现状调查分析,评价区内出现有国家一级保护鸟类黑脸琵鹭、黑嘴鸥和勺嘴鹬,国家二级保护鸟类白腰杓鹬、大滨鹬。调查发现,黑嘴鸥大滨鹬和白腰杓鹬在湛江主要分布在东海岸的雷州附城、东里、东海西湾和西海岸的雷州企水,工程区域由于滩涂面积较少,且养殖塘认为活动频繁,在该区域出现的记录较少。

施工期应加强对施工工人的宣传教育,增强生态环境保护意识,提高对珍稀动植物的认知,禁止发生捕鸟、掏鸟蛋、破坏红树林等违法行为。

综上所述,在采取本方案提出的各种措施后,本项目施工期对栖息鸟类的影响较小。

6.13 对周边航道及通航环境影响

6.13.1 对周边航道的影响分析

项目周边海域分布有湛江港航道。

根据《中华人民共和国航道法》提出:"第二十八条建设与航道有关的工程,建设单位应当在工程可行性研究阶段就建设项目对航道通航条件的影响作出评价,并报送有审核权的交通运输主管部门或者航道管理机构审核,但下列工程除外:(一)临河、临湖的中小河流治理工程;(二)不通航河流上建设的水工程;(三)现有水工程的水毁修复、除险加固、不涉及通航建筑物和不改变航道原通航条件的更新改造等不影响航道通航条件的工程。"本项目属于生态修复工程,主要拟进行红树林的种植,项目不涉及通航建筑物,此外,本项目施工过程全部位于围塘内,对围塘外的冲淤变化影响较小,因此本项目实施对周边航道的冲淤环境影响较小。

根据《广东省航道管理条例》提出: "第八条 开发利用内河、出海口门及沿海航道的滩涂,必须符合航道发展规划和航道技术等级的要求,并征得航道部门同意。第九条 禁止向航道倾倒泥、沙、石、垃圾或在航道两岸边坡推土挖土以及在岸边堆放垃圾及其他容易滑泻的物品等破坏、影响航道的行为。"本项目施工过程全部位于围塘内,对围塘外的冲淤变化影响较小,因此不会对原有通航条件产生不利影响。此外,本项目不会向航道内倾倒泥、沙、石、垃圾等,不会在航道两岸推土挖土,因此不会改变原有航道发展规划和航道技术等级。

综上所述,本项目实施对周边航道冲淤环境影响较小。

本项目施工期仅 2 艘货船运输物料,运输货船主要在红树林种植期间使用, 工期为 13 个月,施工期较短,运输船舶平均每日运输 5 次左右,通航时间较 短,不会对周边航道的航道通航能力造成较大的影响。同时建设单位需对接交通 管理部门、航道管理部门,根据相关法律要求核实是否需要补充通航条件影响评 价,并根据相关要求完善相关手续。

6.13.2 对通航环境的影响分析

施工期将投入2艘施工运输船舶,项目施工过程全部位于围塘内,且项目施工船舶基本不会进入周边习惯性航道区,也不会增加港口航运区的航运密度,且

东面的港口航运区有大坝隔离。因此,本项目对通航环境的影响较小。

6.14 施工导致碳排放的影响分析

红树林湿地是我国重要的海岸带生态系统,具有防风消浪、促淤护岸、固碳储碳和维持生物多样性等生态功能。营造红树林可通过增加红树林面积和生态系统碳储量实现二氧化碳清除,是海岸带生态系统碳汇能力提升的重要途径,红树林湿地是重要的碳库。

尽管围塘里的红树林地上部分生物量丧失,但地下部分所储存的有机碳依然 可能存在。因此在施工过程中,仍有可能造成储存在围塘底泥中的有机碳挥发排 放。

二期工程分 A、B、C 区块施工,施工过程中开挖底泥导致有机碳挥发的量不多,而且围塘已行之多年,围塘内的人为活动频繁,也可能导致有机碳出现持续释放,现存的有机碳较低。施工期有机碳释放对周边环境影响较小。

参照在湛江开发的全国首个蓝碳交易项目:每公顷红树林固定 10.5t CO₂ 计算,项目实施后,每年可固定约 7175t CO₂。项目实施过程造成的碳排放是一次性的,也是相对较少的。

7 运营期环境影响预测与评价

本项目为湛江经开区红树林湿地生态修复系统治理项目,建设内容主要为对东海岛红树林湿地进行生态修复和治理,包括地形改造、苗木种植、管护等,总面积 3044.9 hm²,营造红树林面积 683.37 hm²。工程属无污染的社会公益性基础工程,是一项节能减排工程。本项目营运期不会产生水污染、噪音和大气污染。

7.1 海洋水质环境影响预测与评价

(1) 3 年养护期

项目竣工后需对种植的所有苗木养护 3 年,满 3 年后苗木成活率要在70%以上。种植后要定时检查成活率,新种植的红树林每年要定期抚育,抚育措施包括固定、扶正、补植,有害生物防治。红树林固定、扶正、补植期间会产生少量悬浮泥沙,产生量极小,对海洋水质环境影响微小。

(2) 3 年后红树林运营期

项目运营期基本不会对海洋水质环境产生负面影响。

红树林湿地系统与其他植物湿地系统净化污水的机理相似,是红树林湿地系统中发生的物理、化学、生物学作用的综合过程,红树植物通过自身的生长以及协助湿地内的物理、化学、生物等作用而去除湿地中的污染物质。

有研究表明,红树林湿地对废水中的营养物质和有机碎屑具有明显的网罗作用,从而在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用;红树林湿地系统对污水中 Cd、Ni、Pb、Zn等重金属污染物有较高的净化效率,虽然重金属中95%以上是被土壤所积累,但栽种红树植物的土壤子系统比不栽种红树植物的土壤子系统的净化率高,且红树植物所吸收的重金属主要累积分布在动物不易直接啃食和利用的根、质地较为坚硬的树干和多年生枝,累积总量占群落植物体总量的80%-85%,另有实验表明:红树植物木榄、老鼠勒、秋茄和桐花树幼苗的根能大量富集90Sr,尤其桐花树幼苗,所吸收的90Sr有97.7%集中在根部,说明在自然生境条件下,红树林可为异养生物提供大量洁净的食物,并且避免通过食物链的不断富集而引起人类健康的危害。

红树林生态系统可视为低成本高效率的污水处理系统。红树林是一个"红树

林-细菌-藻类-浮游动物-鱼类等生物群落"构成的兼有厌氧-需氧的多级净化系统,对工业、生活污水等起有效的净化作用,对污水中的重金属和氮磷营养物等有较强的吸收容纳力,具有处理陆地径流带出的有机物质和含油废水等其他污染物的生态功能。

综上, 红树林的种植在一定程度上降低了废水中的营养物质的含量, 起到了 净化废水的作用, 也可缓解近海水体的富营养化效应, 减少赤潮的发生。

7.2 海洋沉积物环境影响预测与评价

(1) 3 年养护期

项目竣工后需对种植的所有苗木养护3年。苗木抚育过程中可能会产生少量的悬浮物,但产生量极小,对海洋沉积物的环境影响较小。

(2) 3 年后红树林运营期

项目运营期,红树林生态环境不会对海洋沉积物环境产生负面影响。项目完工 2~3 年后,滩涂垫高的宜林地土层结构基本稳定,可减少项目对所在海域的影响。

红树林营造工程不会对海洋沉积物产生负面影响,红树林湿地系统具有独特而复杂的净化机理,它能够利用基质-微生物-植物这个复合生态系统的物理、化学和生物的三重协调作用,通过过滤、吸附、共沉、离子交换、植物吸收和微生物分解来实现对水体的高效净化。红树植物的大量凋落物,使林区沉积物中有机质丰富且富含 N、S 官能团、富里酸,林下沉积物中有机质在厌氧状态下的低水平降解,及沉积物中的高粘粒含量,使得红树林沉积物具有较大的表面积和较多的表面电荷,通过离子交换、表面吸附、螯合、胶溶、絮凝等过程和重金属的粒子作用,吸附大量的重金属,从而可以改善周边沉积物质量状态。

因此,项目运营期是可以缓解周边沉积物的质量状态,对海洋沉积物影响较小。

7.3 固体废物环境影响分析

运营期,在红树林巡视、维护和抚育过程中,可能产生少量人工清除的塑料袋、泡沫等海洋垃圾和浒苔等,统一收集后交由环卫部门处理;同时,可能会产

生病死坏死红树林植株,统一收集后交由有能力单位处理;此外,红树林固定、扶正、补植期间会有少量悬浮泥沙产生,但产生量极小,对海洋环境影响不大。

7.4 海洋生态和生物资源环境影响预测与评价

项目营运期无废水和废气产生,抚育过程会产生少量的悬浮物,但产生量极小,不会对东海岛西部周边海水水质造成影响。相反,红树林的种植可以改善周边水质状况,为水生生态系统的恢复创造了较为良好的条件。

通过红树林种植,保护和恢复多样化的湿地资源,充分发挥湿地在调节水质方面的作用,有效净化周围海水水质,使项目周边近岸海域海水水质有所改善。另外,通过红树林生态系统的修复,使湿地生态系统的水平结构、垂直结构和营养结构得以优化,促进湿地生态系统的物质循环和能量流动,充分发挥湿地在防风消浪、固岸护堤、调节径流、控制污染、调节气候、控制土壤侵蚀、促淤造陆、栖息地服务、净化空气和美化环境等方面的多种生态功能,保障区域和周边生态安全和提供优良的生态服务。同时,控制外源污染输入,恢复红树林湿地生态系统自我维持状态,不仅能发挥红树林湿地在区域生态系统的功能,对于控制海岸侵蚀、保持水土和调节区域气候等方面发挥重要作用,还能完善生物网络,保护生物多样性。

综上,项目的建设对海洋生态和生物资源环境具有一定积极的影响。

7.5 对海洋敏感目标的影响分析

项目位于通明海海洋保护区,周边海洋功能区有南渡河口海洋保护区、雷州 湾农渔业区、东海岛南部工业与城镇用海区,周边敏感目标还包括自然保护地、 "三场一通道"、养殖区、国控站位等。

7.5.1 对周边海洋功能区的影响分析

项目占用通明海海洋保护区,周边海洋功能区有南渡河口海洋保护区、雷州 湾农渔业区、东海岛南部工业与城镇用海区。

通明海海洋保护区的管控要求为: 1. 保护通明海红树林; 2. 严格控制养殖污染和水体富营养化,防止外来物种入侵; 3.加强保护区海洋生态环境监测; 4. 执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。

南渡河口海洋保护区的管控要求为: 1. 加强红树林保护; 2. 加强保护区海洋生态环境监测; 3. 执行海水水质一类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。

本项目属于海洋生态修复项目,不会对周边的工业用海、渔业等造成影响。 由上述 7.1~7.4 节分析可知,项目运营期对其所在海域的沉积物和海洋生态环境 较小,不会对周边海洋环境造成负面影响。

项目运营期红树林生境可以改善周边水质、沉积物质量状态;可提高湿地生态系统的稳定性,对海洋生态和生物资源环境具有一定积极的影响。

综上所述,项目与通明海海洋保护区、南渡河口海洋保护区、雷州湾农渔业区、东海岛南部工业与城镇用海区等海洋环境保护要求是相符合的。

7.5.2 对养殖活动的影响分析

项目周边存在有围塘养殖活动,由上述 7.1~7.4 节分析可知,项目运营期定期清理缠绕在红树林的漂浮物,漂浮物统一收集交由环卫部门处置,基本不会对养殖活动造成不利的影响。项目周边大面积的养殖活动可能会导致海水溶解氧和活性磷酸盐超标。红树林湿地对废水中的营养物质和有机碎屑具有明显的网罗作用,从而在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用。因此项目营运期是有利于改善周边海水水质环境,在一定程度上可以降低废水中的营养物质的含量,缓解近海水体的富营养化效应,减少赤潮的发生。

7.5.4 对黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区的影响

本项目实施后,定期清理缠绕在红树林的漂浮物,漂浮物统一收集交由环卫部门处置,项目红树林长成后对废水中的营养物质和有机碎屑具有明显的网罗作用,从而在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用,有利于提升黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区的水质环境,提供更多生长、栖息、产卵的环境。

7.5.5 对自然保护地的影响分析

项目周边分布有广东湛江国家级红树林自然保护区和湛江麻章雷州湾地方级湿地自然公园。

项目运营期海漂垃圾打捞后交由环卫部门处置。上述污染物得到有效处理后,

对项目周边自然保护地的影响较小。

本项目红树林长成后可改善自然保护地海水水质环境、沉积物环境,同时提高自然保护地海洋生态和生物资源环境。

7.5.6 对鸟类的影响分析

本项目运营期基本不会对候鸟日常活动造成不利的影响。本项目拟种植红树林 683.37hm²,红树林种植完成,红树林生态系统得以恢复,为鸟类提供更多的栖息地,有利于鸟类的生存繁殖。

7.5.7 对国控站位的影响

本项目为红树林种植营造项目,项目实施有利于周边生态环境的改善,红树林的种植在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用,也可缓解近海水体的富营养化效应,有利于国控站位水质的提升。

7.5.8 对生态环境的影响分析

1) 对植物的影响

本项目为红树林种植营造工程,项目实施有利于对项目建设占用的 3044.9hm² 的海域生态环境进行改造、美化,有利于改善滩涂和围塘的生态环境,项目运营期海漂垃圾可以打捞收集交由环卫部门处理,坏死病死植株统一收集交由有能力单位处置,无其他污染物产生,不会对植物造成不良影响。

2) 对动物的影响

本项目为红树林种植营造工程,项目实施后将为动物提供更多的栖息环境, 并改善其生活环境,有利于周边动物的生存发展、繁衍生息。

3) 对生态景观的影响分析

项目的建设对部分裸露的滩涂和围塘进行改造,对原有的生态格局造成一定影响。但随着项目红树林的成长,将形成新的绿色的生态景观。

8 环境保护措施及其可行性论证

8.1 污染环境保护对策措施

8.1.1 施工期污染环境保护对策措施

通过工程分析,本项目施工期环境污染主要有水污染、大气污染、噪声污染及固体废弃物污染。其中,施工期水环境污染主要包括滩涂高程改造施工(取土施工、滩面平整施工)、红树林种植(挖穴、种植工程)和抚育(固定、扶正作业)等引起的悬浮物,船舶污水、施工人员生活污水等;大气污染包括施工废气;噪声污染主要是由施工机械和运输产生的噪声;固体废弃物污染包括施工过程中产生的生活垃圾、施工船舶产生残油、废油、不合格红树林苗木以及废容量薄膜袋等。

8.1.1.1 水污染防治对策措施及可行性

(1) 悬浮泥沙

本项目施工期间产生的悬浮泥沙对环境影响较大的主要是滩涂高程改造施工(取土施工、滩面平整施工)、红树林种植(挖穴、种植工程)和抚育(固定、扶正作业)等引起的,因此重点对这几个环节进行污染防治,拟采取的悬浮泥沙污染防治措施:

- 1) 针对取土、滩面平整和红树林种植
- ①采取就近取土的原则:
- ②合理安排施工顺序和进度,减小运输船等船只和设备对底质的搅动;
- ③做好施工设备的日常维修检查工作,保持取土设备的良好运行,发生故障后应及时予以修复;
 - ④严格控制整地高程。
 - 2) 其他
- ①在台风、暴雨等恶劣天气下,应提前做好防护工作,进行必要的加固措施,以保证有足够的强度抵御风浪;
 - ②严格遵守施工程序,减少海域污染。在施工过程中,应实施悬浮物监控计

- 划,控制悬浮泥沙的浓度和扩散范围:
- ③完善环保设施,采取积极措施,尽量减少对海洋环境质量的影响,如遇突发性事故,造成悬浮泥沙外泄,及时与有关渔业主管部门联系,并采取积极的措施,将对渔业损失的污染影响程度降低到最低。
- ④加强在施工期的环境监测,若发现施工过程对周边海洋保护区有较大影响,应停止施工,进行相关协调补偿。

(2) 污水

项目施工过程中产生的废水主要来自生活污水、船舶含油污水。

1)施工期移动厕所收集的污水,定期通过槽车运输交由民安街道污水处理厂处理。

民安街道污水处理厂已投入正常使用,污水采用的处理工艺为"预处理+SBR+纤维滤池过滤+紫外线消毒",生活污水日处理量为2000m³/d。本项目施工期生活污水排放量较少(约2.5m³/d),民安街道污水处理厂可以完全接收本项目产生的生活污水。

- 2)施工船舶含油污水应严格按照《船舶水污染物排放控制标准》 (GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后 应交由有资质的单位处理。
- 3)加强对施工用水的管理,教育施工人员节约用水,减少生活污水的产生量。

施工期采取的水环境保护措施均是常规环保措施,在国内外类似工程中应用广泛,在经济、技术等方面可行。

8.1.1.2 固体废弃物污染防治对策措施及可行性

本项目固体废弃物污染主要是施工过程中产生的生活垃圾、施工垃圾、船舶残油、废油、不合格红树林苗木。

- (1)对于施工人员生活垃圾,设立专用容器加以收集,并及时清运,交环 卫部门处理。
- (2)船舶作业产生的残油、废油等危险废物,统一交由有危险废物处理资 质的单位处置。
 - (4) 滩涂杂物清除会有海漂垃圾、浒苔等产生,统一收集后交由环卫部门

处置。不合格苗木统一收集后交由有能力单位处置。

(5)加强对施工单位监督管理,禁止将施工固体废弃物倾倒至项目附近海域中,不得非法出售。

施工期采取的固废处置措施均是常规环保措施,在国内外类似工程中应用 广泛,在经济、技术等方面可行。

8.1.1.3 大气污染防治对策措施及可行性

本项目大气污染主要是施工过程中运输车辆及施工机械产生施工废气。拟采取污染防治措施如下:

- (1)对入场施工机械进行管理,检查合格的机器才可进场作业,尽量减少施工机器包括车船产生的燃油废气。
- (2)施工机械和运输车辆的燃气废气,属自然排放。要加强管理,采用符合标准的低含硫燃料,减少污染物排放。
- (3)按照《中华人民共和国大气污染防治法》第六十二条规定,运输货船发动机及有关设备应经船舶检验机构检验合格后方可投入使用。湛江地区属于《船舶大气污染物排放控制区实施方案》列明的控制区范围内,船舶应使用硫含量不大于 0.1%m/m 的低硫燃油以减少大气污染。故项目运输货船使用燃油应符合使用硫含量不大于 0.1%m/m。

本项目施工废气产量不大且影响范围有限,污染时间较短,施工中断或停止 污染物随之消失。施工期采取的大气环境保护措施均是常规环保措施,在国内外 类似工程中应用广泛,在经济、技术等方面可行。

8.1.1.4 噪声污染防治对策措施及可行性

本项目施工期对声环境的影响因素主要是运输货船、施工机械及运输车辆的噪声。

- (1)合理安排施工计划以及施工时间,强噪声的施工机械夜间(22:00~6:00) 应停止施工作业。
- (2)施工单位必须选用符合国家有关标准的施工机械和车辆,尽量采用低噪声的施工机械和工艺,同时应加强各类施工设备的维护和保养,保持其良好的运转,以便从根本上降低噪声源强。

- (3)在作业过程中加强对各种机械的管理、维护和保养,使施工机械保持 良好的运行状态,减少因机械磨损而增加的噪声。
- (4)加强对运输车辆的管理,运输路线尽量绕开周围的村庄、学校、医院等:穿越集中区禁止任意鸣笛,维持车辆的良好运行状态降低运行噪声。
 - (5) 加强施工监督管理。

施工期采取的噪声环境保护措施均是常规环保措施,在国内外类似工程中 应用广泛,在经济、技术等方面可行。

8.1.2 营运期污染环境保护对策措施

本项目营运期环境污染主要海漂垃圾和病死坏死红树林植株。

海漂垃圾统一收集后交由环卫部门处理,病死坏死红树林植株交由有能力单位处置。

营运期采取的固废处置措施均是常规环保措施,在经济、技术等方面可行。

8.2 非污染防治对策措施

8.2.1 施工期非污染防治对策措施

本项目施工非污染环境影响主要集中于对海洋水文动力等方面的影响,应 采取如下保护对策措施:

- (1) 严格按照工程的用海范围、用海方式进行施工,尽量减少超范围的施工,可以最大限度减少对潮流场等水动力条件的改变程度,同时降低对地形地貌和冲淤环境的影响。
 - (2) 采用先进、合理的设备和工艺、缩短施工周期。
- (3)取土和滩面标高改造严格按照设计定位施工,避免因失误导致反复施工对海床形态的过多改变。
- (4) 围塘挖方只能堆放在项目围塘内红树林种植区,禁止堆放在围堤上。 养殖塘挖方仅回用于本养殖塘填方,禁止跨塘回用。禁止将挖方抛入围塘外海域, 禁止挖方外运。
 - (5) 禁止改扩建围堤,禁止新增围填海。
 - (6) 挖方作业前在围塘内现有红树林设置保护围栏和标识牌。

- (7) 场地内滩面高程改造后,让其自然沉降,待稳定后再有步骤地进行红树林的种植,并注意红树林的成活率。
 - (8) 为了保障船舶通航安全和施工工作的顺利进行,施工要求如下:
 - ①施工单位应在工程范围设置临时警示标志,提醒过往船舶注意安全。
 - ②施工前应根据有关规定,办理有关审批手续和发布航道通告。
- ③实施施工作业的设施应按照有关规定在明显处昼夜显示规定的号灯、号型。
- ④施工期间,如遇台风影响施工区域时,施工单位应做好防台工作,船舶应 遵守相关船舶防台规定,并相应做好防台工作。
 - ⑤施工单位应确保所有施工的器械、工具和材料不占据主航道水域。
 - ⑥施工期间,施工照明灯光应尽可能避免影响船舶夜间航行。
- ⑦施工时严禁倾倒任何废弃物,并有责任在施工完成后清除施工水域中的 碍航物体。
- (9)减轻工程施工建设对渔业资源和渔业生产的影响,做好施工期的海水环境跟踪监测与环境监理工作。对施工期附近水域开展生态环境及渔业资源跟踪监测,及时了解工程施工对生态环境及渔业资源的实际影响。工程施工前应将环境监测方案报海洋主管部门备案。

8.2.2 运营期非污染防治对策措施

营运期主要的非产污环节包括项目实施后将在一定程度上对岸滩冲淤环境产生影响。针对项目运营后岸滩冲淤环境变化情况,建议提出以下措施:

- (1) 红树林在抚育期,通过低潮施工,减轻悬浮泥沙的产生。有害生物防治以生物防治和物理防治为主,尽量减轻对环境的污染。对项目区危害较严重的害虫种类有螟蛾类、卷蛾类、袋蛾类、枯叶蛾类和盾蚧类,对于大规模严重发生的红树林虫害一般提倡采用黑光灯诱杀,对滕壶类污损生物可采用人工清除或涂抹氟聚合物、有机硅树脂的方法防治,对于真菌和细菌病害可用多菌灵喷洒。
- (2) 营运期设置专职或兼职人员巡护,禁止外来人员和船只进入红树林修 复区,禁止挖海螺、捕鱼虾等捕捞活动及人、畜踩踏活动。

8.3 海洋生态保护对策措施

8.3.1 生态保护对策措施

本项目对海洋生态环境保护措施如下:

- (1)项目建设产生的悬浮泥沙、船舶含油污水、生活污水及生活垃圾等,如不采取措施,将对附近海洋生态环境产生一定影响,因此应按照报告书有关章 节的环境保护措施提出的具体要求加以实施、认真落实、严格管理。
- (2)应对整个施工进行合理规划,尽量缩短施工期,以减轻施工可能带来的水生生态环境影响。
- (3)本项目取土工程和滩面高程改造时,严格控制施工作业场地,同时加强施工期环境监测,在工期许可的前提下,最大化降低施工强度以减少对海洋环境的影响。
- (4)施工单位应在施工前期充分做好生态环境保护的宣传教育工作,增强施工人员对海洋珍稀动物保护的意识。
- (5)施工期间和工程建成后,应对项目附近的生态环境进行跟踪监测,掌握生态环境的发展变化趋势,以便及时采取调控措施。
- (6)本项目的取土、滩面高程改造产生的悬浮泥沙将会造成区域范围内一定量的海洋生物资源损失,建设单位应按照"损失多少,补偿多少"的生态补偿原则予以补偿。具体补偿的补偿方式和补偿金额应按相关规定落实。
- (7) 合理安排海域施工时间,施工期尽可能避开休渔及经济鱼类产卵、洄游季节以减轻生态环境影响。高强度的取土作业尽量避开渔业资源繁殖高峰季节3月1日至5月31日。
- (8)在开始施工作业前,应密切注意观察施工船舶周围水生生物的活动,一旦发现珍稀水生生物,应主动避让,并设定安全距离为警告区域。在此警告区域内若发现珍稀水生生物等,应暂停施工,采用无害声驱的方法将其驱逐出作业海域,再进行施工作业。一旦发生误伤保护动物,尽快通知保护区和渔政管理部门实施救护。
- (9)由于施工悬浮泥沙对鱼类等幼苗的影响较大,因此,项目取土等悬浮 泥沙产生源强较大的施工作业,应避开附近养殖场的下苗期,以将项目可能对附

近养殖场的渔业资源影响降至最低。

(10) 如施工不能完全避开 3-5 月, 应采取如下措施:

- ①减少施工时间或降低施工强度,尽量选择退潮期施工;
- ②设置观察员在施工期间观察是否有白海豚等哺乳类动物靠近。若发现有白海豚,应暂停施工,采用无害声驱的方法将其驱逐出作业海域,再进行施工作业;
- ③加强环境管理和环境监理工作,做好环境跟踪监测工作,减轻项目建设对海洋环境的影响:

因此,在采取本项目提出的各类生态保护对策后,可以减少项目施工期对周边环境造成的不良影响。

8.3.2 敏感目标保护对策措施

本项目评价范围内环境敏感区主要为通明海海洋保护区、南渡河口海洋保护区、广东湛江红树林国家级自然保护区、湛江麻章雷州湾地方级湿地自然公园、南海北部幼鱼繁育场所保护区、黄花鱼幼鱼保护区、养殖区、国控站位等。

(1) 针对红树林的保护措施

本项目位于广东湛江红树林国家自然保护区实验区,当前威胁红树林的主要因素为海水水质污染、人为的损害、海洋生物的危害、滩涂养殖的影响、近岸海域固体废弃物的影响。

- ①避免海水水质污染措施:施工期生活污水收集后运至民安街道污水处理厂处理,不随便排放;船舶含油污水应严格按照《船舶水污染物排放控制标准》(GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位处理。
- ②减轻人为损害措施:加强对施工人员的宣传教育,禁止捕杀野生动物,禁止损害红树林。
- ③减轻海洋生物的危害:藤壶类生物在红树植物表面的附着性与营生性,影响了红树林的正常生产而成为危害红树林面积的污染生物。造林后的幼树茎叶上附着的藤壶一般为数个至数百个不等,当藤壶的吸附数量达到一定程度,就会影响到红树林植物的呼吸作用和光合作用,致使红树植物不易生长或死亡。故项目施工及抚育过程中若发现有藤壶类生物,应定期及时人工去除藤壶类生物。
 - ④减轻滩涂养殖的影响:滩涂养殖会侵占红树林自然延伸的区域,限制红树

林的发展。为减轻滩涂养殖对红树林的影响,施工单位及业主单位应向周边村民加强宣传红树林的作用及红树林保护相关要求。

⑤减轻近海海域固体废弃物的影响: 红树林所处的潮间带大都位于近岸海区,随着涨落潮、滩涂红树林区淤积着大量的海漂垃圾所带来的污染, 在水流的作用下, 造成对苗木严重的机械伤害, 或者挂在苗木上, 随着潮水的涨退和大浪的冲击, 使种植的在滩涂的苗木拔起或将苗木压倒, 影响红树林的自然更新和人工造林的成活率。为避免海漂垃圾对红树林的影响, 施工单位应定期清除海漂垃圾。

(2) 针对中华白海豚的保护措施

为避免本工程对中华白海豚造成不良影响、需要做好相应的保护措施。

- ①本项目应采取控制潮沟取土施工范围,严禁超范围施工,加强施工期间的 跟踪监测。项目应配备海豚观察员,发现中华白海豚出现在工程海域附近时进行 驱赶,可降低施工对中华白海豚的影响。
- ②建议在潮沟取土开始施工前,应密切注意观察施工船舶周围白海豚的活动,并设定至少 2 km 的安全距离为警告区域,若发现有白海豚,应暂停施工,采用无害声驱的方法将其驱逐出作业海域,再进行施工作业。船舶施工噪声对白海豚影响不大,在做好上述防护措施的前提下,施工期对中华白海豚的影响在可控的范围之内。

(3) 针对鸟类的保护措施

为避免本工程对区域鸟类的生长繁殖造成不良影响,需要做好相应的保护措施。

- ①合理安排施工期,减少在区域鸟类繁殖、迁徙时期的作业内容,施工要尽量避开候鸟栖息越冬和鸟类迁徙时间,减缓对鸟类的影响。
- ②繁殖季是鸟类最敏感的时期,如果有人为的强烈噪音,它们可能会马上弃巢,故尽量避开繁殖期进行施工。若需在繁殖季进行施工,则尽量将高噪声设备远离鸟类营巢区,并通过选用低噪声设备、做好减震降噪、采用隔声屏障等措施,有效降低施工噪声对鸟类的影响。
- ③不论是昼行和夜行鸟类,其对强光均较为敏感,故需要合理安排施工时序,尽量避免夜间施工。如遇需要夜间施工的特殊情况,遵守保护区相关管理规定,制定夜间施工方案,减少光污染对动植物的影响;避免不必要和过强的光照;使

用合格的照明设备,如使用亮度适当、只照到需要照亮的区域或对象、防止不需要照亮的地方和对象被动受光的灯具;选择适当的照明方式,采取必要的照明控制,严格控制照明的时间和空间。

④湿地鸟类以水生生物为食,主要以鱼、虾、蛙、蝗虫、蝼蛄等水生和陆生昆虫及昆虫幼虫,以及其他小型无脊椎动物或小蛇、蜥蜴等为食。项目施工时,也需要对水生生物做好相应保护措施,尽量避开恶劣天气施工,减少泥沙扰动,对施工机械设备定期检查滴油漏油情况,及时整改,避免由于施工造成水生生物大量死亡,对鸟类食物数量造成较大影响。

⑤做好施工人员教育,禁止毁坏鸟巢,禁止捕鸟、杀鸟。

(4) 针对黄花鱼幼鱼保护区的措施

黄花鱼幼鱼保护区保护期为每年的 3 月 1 日至 5 月 31 日,由于春夏季 是鱼、虾类产卵、仔幼鱼索饵季节,建议施工尽量避开这一季节。无法完全避开 时,应加强环境管理和环境监理工作,做好环境跟踪监测工作,减轻项目建设对 海洋环境的影响。

因此,在采取本项目提出的各类敏感目标保护对策措施的情况下,可以减少 本项目施工期对周边各类敏感目标的不良影响。

8.3.3 海洋生态修复与补偿措施

8.3.3.1 人工岸线补偿措施

项目施工建设在科学组织、合理施工、尽量减小环境影响的基础上进行,项目红树林种植不占用人工岸线,但二期工程 B04 养殖塘少量塘埂与人工岸线重叠,重叠长度约 42m。二期工程建设内容包括地形改造、苗木种植、管护以及养殖设计,施工范围主要位于围塘内,对塘埂的影响不大。因此本项目不需要实行岸线占补。

8.3.3.2 生态补偿措施

《中国水生生物资源养护行动纲要》(国发 [2006]9 号)明确提出:建立健全水生生物资源有偿使用制度,完善资源与生态补偿机制。按照谁开发谁保护、谁受益谁补偿、谁损害谁修复的原则,开发利用者应依法交纳资源增殖保护费用,专项用于水生生物资源养护工作;对资源及生态造成损害的,应进行赔偿或补偿,

并采取必要的修复措施。目前,海洋工程的生态补偿通常有以下三种方式: (1) 经济补偿; (2)资源补偿:对重要生物资源(鱼类、底栖动物和鱼卵仔鱼)的 损失应进行增殖放流补充; (3)生境补偿:对受到破坏的海洋生境(渔场、繁殖地、育幼场和索饵场)进行恢复与重建。

(1) 生态环境补偿方案

根据国务院《关于印发中国水生生态资源养护保护行动纲要的通知》精神,建设单位应当按照有关法律规定,制定项目对生态资源损失的生态补偿方案,采取增殖放流等修复措施,改善水域生态环境,实现渔业资源可持续发展,促进人与自然的和谐发展,维护水生生物多样性。本项目按照"损失多少,补偿多少"的生态补偿原则,对工程造成的生态资源损失予以补偿。

(2) 生态资源等量补偿

为了缓解和减轻工程对所在海洋生态环境的不利影响,建设单位应根据农业部《建设项目对海洋生物资源影响评价技术规程》(SC/T9110-2007)的有关规定,对项目附近水域的生物资源恢复作出经济补偿。根据分析计算,本项目生态补偿总费用约为 379.2 万元,用于本项目生态补偿措施。

(3) 生境补偿

根据前文分析,本项目对周边海洋生境的影响主要为悬浮泥沙的影响, 悬浮泥沙随着施工的结束而结束,未破坏周边的海洋生境,因此本项目不需要对 周边的海洋生境进行恢复与重建。

本项目对周边海洋环境的影响主要是施工期的悬浮泥沙影响,建设单位对损失的生物资源进行等量补偿,同时采取减缓悬浮泥沙影响的环保措施,可减缓项目建设对周边环境的影响。因此,本项目提出的生态补偿措施是合理可行的。

8.4 环境保护设施和对策措施

8.4.1 施工期污染防治措施

通过工程分析,本项目施工期环境污染主要有水污染、大气污染、噪声污染及固体废弃物污染。施工期污染防治对策措施见表 8.4.1-1。

表 8.4.1-1 施工期主要环境保护设施和对策措施一览表

污染环节	污染源	环境保护对策措施	预期治理效果
	悬浮泥沙	合理安排施工顺序和进度;缩短施工 时间;采用先进的施工工艺和设备; 应做好恶劣天气条件下的防护准备; 严格控制整地高程等。	控制悬浮泥沙的扩散 范围
水环境污染	生活污水	生活污水经临时移动厕所进行收集预 处理后由槽罐车拉运至民安街道污水 处理厂进行处理。	
	船舶含油污	收集上岸交由有能力处理的单位处	收集上岸委托处理,
	水	理。	不直接向海域排放
	生活垃圾	集中定点分类收集,后交环卫部门统 一处理	
固体废弃	滩涂杂物	滩涂杂物清理收集后分拣,可回收部分回收,不可回收部分交由环卫部门 清运。	确保固体废物得到有 效处理处置,不向海
物污染		按照水运污染危害性货物实施管理, 统一交由有危险废物处理资质的单位 将其安全处置。	域排放
	不合格苗木	统一收集后交由有能力单位处置	
大气污染	施工机械废气	对入场施工机械进行管理,检查合格的机器才可进场作业,要加强管理, 采用符合标准的低含硫燃料,减少污染物排放。	确保施工期废气无 组织排放达标
噪声污染	噪声	施工单位必须选用符合国家有关标准的施工机械和车辆,尽量采用低噪声的施工机械和工艺;合理安排施工计划以及施工时间,对噪声较大的施工机械应合理安排施工时间;加强对运输车辆的管理,运输路线尽量绕开周围的村庄、学校、医院等	确保施工期噪声排 放达标

8.4.2 运营期污染防治措施

通过工程分析,本项目运营期环境污染主要为海漂垃圾和病死坏死红树林植株等。运营期污染防治对策措施见表 8.4.2-1。

表 8.4.2-1 运营期主要环境保护设施和对策措施一览表

污染环节		污染源	环境保护对策措施	预期治理效果	
固废	固体废弃 物污染	海漂垃圾 病死坏死红树 林植株	统一收集后交由环卫部门 处置 统一收集后交由有能力单 位处置	避免固体废物直接进 入项目所在地附近海 域	

8.4.3 生态保护对策措施

通过工程分析,本项目施工期对海洋生态造成的影响主要体现在滩涂高程改造施工(取土施工、滩面平整施工)、红树林种植(挖穴、种植工程)和抚育(固定、扶正作业)等施工过程,为避免项目施工对项目所在的海域海洋生态环境造成事实上的负面影响,生态保护对策措施见表 8.4.3-1。

表 8.4.3-1 海洋生态保护对策措施一览表

生态影响因子	环境保护对策措施	责任单位
底栖生境及底 栖生物	对整个施工进行合理规划,尽量缩短工期;施工单位制定有 关海洋生态环境保护奖惩制度,落实岗位责任制	施工单位
	施工尽量避开工程水域鱼类的产卵期、浮游动物的快速生长	
	期及鱼卵、仔鱼、幼鱼的高密度季节进行水下施工等作业;	
	施工作业前,应密切注意观察施工船舶周围水生生物的活动,	
渔业资源及渔	一旦发现珍稀水生生物,应主动避让,并设定安全距离为警	
业生存空间	告区域; 施工过程产生的悬浮泥沙、生活污水及生活垃圾等	施工单位
	严格按照环境保护措施提出的具体要求加以实施、认真落实、	
	严格管理	
	施工期间和工程建成后,应对项目附近的生态环境进行跟	
其他	踪监测,掌握生态环境的发展变化趋势,以便及时采取调	施工单位
	控措施	

8.5 生态用海方案的环境可行性

随着人类开发利用活动的深度和广度不断拓展,发展与保护的矛盾日益突出,必须用"人海和谐发展"的理念和方法协调、缓解经济发展与生态环境间的矛盾,把建设生态文明与加快转变经济发展方式结合起来,促进经济社会的健康可持续发展。生态用海是开发利用海域资源过程中贯彻落实生态文明建设要求的基本理念,旨在通过系统性和综合性的措施要求,实现海域空间资源利用效率最大化,对生态环境影响最小化,形成人海和谐发展的现代化建设新格局。

2015 年 6 月 19 日,国家海洋局发布了《国家海洋局海洋生态文明建设实施方案(2015-2020 年)》(国海发[2015]8 号),方案指出:坚持海陆统筹、区域联动,以海洋环境保护和资源节约利用为主线,以海洋生态文明制度体系和能力建设为重点,以重大项目和工程为抓手,将海洋生态文明建设贯穿于海洋事业发展的全过程和各方面,实行基于生态系统的海洋综合管理,推动海洋生态环境质量逐步改善、海洋资源高效利用、开发保护空间合理布局、开发方式切实转变,为建设海洋强国、打造美丽海洋,全面建成小康社会、实现中华民族伟大复兴做出积极贡献。

8.5.1 生态用海方案

本工程生态建设内容包括滩涂高程改造、红树林种植等内容。

本项目为生态整治修复项目,通过红树林种植方式进行生态修复,积极推进 红树林湿地系统、滨海生态景观的建设及清淤整治等工作,项目实施后将使周边 海域水质得到改善,同时营造并扩大候鸟觅食栖息,生产繁殖的场所,明显增加 红树林区鸟类数量实现集海水、滩涂、红树林、候鸟、生态休闲旅游于一体的旅 游景观。

滩涂高程改造拟采取环保防范措施:施工过程中,挖掘机应精确定位后再开始取土,选用 GPS 全球定位系统,精确确定需取土位置、路线及范围,结合施工需求进而合理取土,避免超量取土,从根本上减少对环境影响的悬浮物产生量、扩散范围。经上述环保措施处理后,滩涂高程改造对海洋环境影响较小。

8.5.2 生态用海方案环境可行性分析

滩面高程改造等施工时将一定量的入海悬沙对水质、生态环境造成影响,但

这种影响时间是短暂的,一旦施工完毕,水质环境随着施工期结束而逐渐恢复原状。施工期间,施工船舶含油污水应严格按照《船舶水污染物排放控制标准》(GB3552-2018)的要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位处理;施工生活污水一并经槽车运输民安街道污水处理厂处理;生活垃圾经收集后交由环卫部门清运处理。工程实施后,可改善水动力、冲淤、地形地貌及海洋生态环境,改观岸线景观,对岸线具有保护性意义。因此,从环境保护角度看来,施工方案可行。

9 环境事故风险分析与评价

9.1 环境风险评价原则与工作程序

9.1.1 评价工作原则

环境风险评价应以突发性事故导致的危险物质环境急性损害防控为目标,对 建设项目的环境风险进行分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应急建议要求,为建设项目环境风险防控提供科学依据。

9.1.2 评价工作程序

评价工作程序见下图。

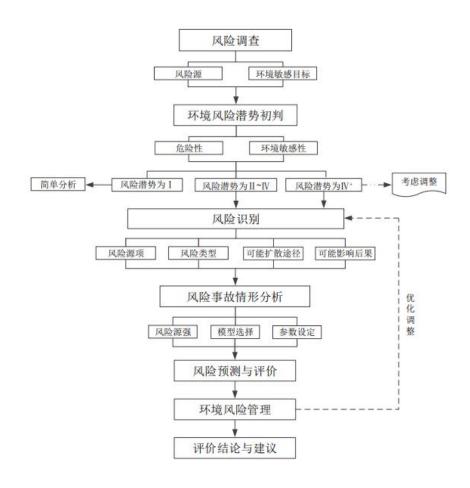


图 9.1.2-1 环境风险评价工作程序图

9.1.3 评价工作等级

9.1.3.1 风险潜势初判

计算项目区危险物质在最大存量与对应临界量的比值 O:

- (1)单元内存在的危险物质为单一品种,计算该物质的总量与临界量比值,即为 Q;
- (2)单元内存在的危险物质为多品种时,则按下式计算物质的总量与临界量比值(Q)。

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q1, q2...qn——每种危险物质实际存在量, t;

Q1,Q2...Qn——与各危险物质相对应的生产场所或贮存区的临界量,t。

根据《建设项目环境风险评价技术导则》(HJ/T169-2018)附录 B, 柴油临界量为 2500t。

本项目为红树林生态修复项目,不涉及危险化学品的储运,项目主要环境风险为船舶漏油、溢油对水体的影响。项目施工使用船舶为1艘绞吸式挖泥船(2000m³/h)、2艘苗木运输船,根据《水上溢油环境风险评估技术导则》(JT/T1143-2017)中的规定,本项目可能最大水上溢油事故溢油量,即设计船型一个燃料油边舱燃油量12t。根据《建设项目环境风险评价技术导则》(HJ169-2018)附录表 B.1 突发环境事件风险物质及临界量中381油类物质(矿物油类,如石油、汽油、柴油等;生物柴油等)临界量为2500t,则O=36/2500=0.0144<1,该项目环境风险潜势为I。该项目环境风险潜势为I。

9.1.3.2 风险评价等级判定

根据《建设项目环境风险评价技术导则》(HJ169-2018)中"评价工作等级划分"表确定评价工作等级,项目环境风险潜势为 I,环境风险评级工作等级为简单分析。

表 9.1.3-1 评价工作等级划分

环境风险潜势	IV 、IV+	III	II	I
评价工作等级	_	\equiv	11]	简单分析*

备注:*是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、 风险防范措施等方面给出定性的说明。

9.2 环境风险识别与事故概率分析

9.2.1 环境风险识别

本项目为海洋生态修复工程,属于非污染性项目,运营期项目自身不产生污染,本项目环境风险主要集中在施工期,本项目风险事故种类主要来自以下两个方面:

1、突发性自然灾害导致项目用海风险事故

此类风险突发性强,人为可控性相对较差,只有提前防范,才能做到风险事故发生时尽量减小事故带来的损失。譬如:台风、风暴潮、热带气旋等,这些灾害发生在施工期间,可能导致堤坝被冲毁,出现大规模悬浮物扩散污染,或者施工设备遭到破坏,造成燃料油泄漏。

2、船舶溢油风险故

溢油污染分为事故性污染和操作性污染两大类,事故性污染是指船舶碰撞搁浅、触礁、起火、船体破损、断裂等突发性事故造成的污染;操作性污染是指码头装卸作业,以及船舶事故性排放机舱油污水、洗舱水、废油、垃圾等造成的污染。就本项目而言,存在的可能是发生事故性污染事故。

由于客观原因加上人为因素,都有可能造成溢油事故的发生,因而必须加强防范措施,重视对船员的管理和培训,尤其是提高船员安全生产的高度责任感和责任心,增强对潜在事故风险的认识,提高实际操作应变能力,避免人为因素以减少风险事故的发生与危害。

9.2.1.1 船舶溢油事故因素

船舶运输过程事故可分为航行事故和船舶本身(完整性)事故。航行过程事故包括碰撞、触礁、搁浅等,船舶本身事故包括船舶火灾、结构损坏、设施故障等。可能导致船舶泄漏的直接或间接原因有船舶与船舶相互碰撞、船舶搁浅、船舶火灾爆炸、恶劣环境条件下船舶翻沉或结构断裂。

本项目船舶污染事故主要风险因素一览表见表 9.2.1.1-1。

表 9.2.1.1-1 主要风险因素一览表

风险类型	风险因素					
	船舶密度(艘次/年)、周围海域危险品船密度(所占艘次)、					
船舶运输状况	水上加油站和过驳作业点状况(艘次)、单壳或双壳船舱、					
	船上设施及船龄					
航道	航线及进出港航道状况、助航、导航条件					
自然灾害	台风、风暴潮、洪水、暴雨、大雾、地震等					

9.2.1.2 本项目海域环境风险因素分析

1、工程技术系统

(1) 航道

航道条件是影响船舶安全航行的主要风险因素之一,船舶发生搁浅、碰撞等 事故原因大多与航道因素有关。

(2) 助航导航设施

该项目海域助航、导航设施根据规范配备、能满足安全要求。

(3) CCTV 和 AIS 系统

珠江口海域已建立船舶交通管理(VTS)系统。

(4) 通航密度

在船舶进出港过程中,会出现船舶对遇、追越或交叉相遇局面,这些位置成为交通流的节点,在交通流节点位置,船舶流量大,受航行条件的制约,容易造成船舶交通事故,环境污染事故风险性较大。

船舶密度的快速增长,是导致船舶碰撞事故发生的一个主要风险因素。疏浚 完成后,通航便利性提升,该港区的船舶密度可能进一步增大,事故发生的可能 性增加。

(5) 船舶

根据调查,目前的进港船舶技术状况较好,且消防设施较齐全,可以起到防止和较少船舶溢油事故性漏油的作用。

2、人员系统

根据国内外船舶事故统计分析,人为因素也是事故发生的主要原因之一。总结以往的人为因素有:

- (1) 船员违章排放油污水:
- (2) 船长在开船时因人为因素导致船舶碰撞、搁浅或触礁;
- (3) 船员和操作人员不熟悉使用应急设备。

3、环境系统

(1) 风对船舶通航安全的影响

项目所在海区台风数量较多,且风力较强,台风期较长,台风可能对船只造成危害。

(2) 流对船舶通航安全的影响

深水区涨落潮的流速较大,船舶在航行中受横流影响将发生船舶偏移,使船舶偏离航道中心线,从而产生风险因素。

(2) 波浪对船舶通航安全的影响

该海域波浪较大,波浪较大使船舶航行和作业难度增加,危及船舶通航安全。

9.2.2 事故发生概率

9.2.2.1 突发自然灾害概率

影响本海域的热带气旋有两类,一类是来自西太平洋的热带气旋,另一类是在南海生成的热带气旋(又称南海台风)。以硇洲海洋站风力达 6 级,热带气旋中心位置进入距 108.0~113.0°E、18.5~22.5°N 区域内为影响标准,根据台风年鉴资料统计,1949~2015 年期间,登陆或严重影响本海域的热带气旋共有304 个(见表 9.2.2-1),年平均 4.5 个。热带气旋 8~9 月出现最多,占 24%,其次是 7 月占 19%,1~3 月没有热带气旋影响本海域,1949 年~2015 年期间,热带气旋登陆或严重影响时达到超强台风的有 21 个,强台风 31 个,台风56 个,强热带风暴 59 个,热带风暴 75 个。

9.2.2.2 船舶碰撞事故概率

(1) 区域事故概率分析

据统计,2018-2021 年广东海事局辖区累计发生列入统计的一般等级以上水上交通事故 136 宗,见表 9.2.2-1。

2018年共发生38起一般及以上等级事故,其中,碰撞11起,其他16起,自沉5起,触碰2起,风灾0起,触礁2起,火灾/爆炸1起。碰撞、其他、

自沉等事故占事故总数的 84.2%, 其中, 碰撞事故就占了 28.9%。

2019 年共发生 37 起一般及以上等级事故,其中,碰撞 6 起,其他 23 起,自沉 4 起,触碰 3 起,风灾 0 起,触礁 3 起,火灾/爆炸 0 起。碰撞、其他、自沉等事故占事故总数的 89.2%,其中,碰撞事故占 16.2%。

2020 年共发生 40 起一般及以上等级事故,其中碰撞 18 起,其他 9 起,自沉 8 起,触碰 2 起,风灾 1 起,触礁 1 起,火灾/爆炸 1 起。碰撞、其他、自沉等事故占事故总数的 87.5%,其中,碰撞事故就占了 45.0%。

2021 年第 3 季度共发生 21 起一般及以上等级事故,其中碰撞事故 11 起,其他事故 6 起,自沉事故 2 起,触碰事故 2 起。

可见,船舶碰撞事故仍是水上交通安全事故中相对频发的事故类型。

年度 事故总数 碰撞 风灾 自沉 触碰 火灾/爆炸 触礁 搁浅 其他

表 9.2.2-1 2018 年 1 月-2020 年 9 月广东海事辖区事故类型统计

注: 2021 年仅统计前三个季度数据。

从历年水上交通安全事故发生地点来看,事故发生主要集中在珠江口、粤东和粤西海域,占了事故总数绝大部分,其中又以珠江口水域居多,主要是该水域通航船舶相对多,个别月份海况条件差,目航道交错情况相对复杂所致。

(2) 项目海域事故概率

根据湛江海事局对湛江港区水域船舶交通事故的统计分析,随着海事部门不断加大水上交通管理力度,管理手段、方法不断优化,近年来,湛江港区水上交通安全形势持续稳定,2015~2017年来列入统计的水上交通事故共 49 起,见下表 9.2.2-2。

表 9.2.2-2 湛江辖区 2015~2017 年船舶安全事故统计表

年份		事故类型及数量								
平 版	碰撞	碰撞 搁浅 触礁 触损 浪损 火灾 风灾 机损 自沉 合计								
2015	3	1	1				9	1	2	17

2016	5	4	1				1	2	13
2017	4	6		4	1	1		3	19
合计	12	11	2	4	1	10	2	7	49

从事故种类来看,碰撞以及搁浅事故居于首位,分别占总事故数量的 24.48%、22.45%,其次是风灾和自沉分别占 20.41%、14.29%。

表 9.2.2-3 湛江辖区 2015~2017 事故发生水域分布统计表

事故水域	外罗水道	徐黑角开域	龙腾	湛江 港航 道	锚地	港池	吴川 王村 港	硇洲岛 附近	雷州乌 石港 1 号灯 浮	灯角近域	北水 道 1 号灯浮
2015	3		1	1	5	4			1		
2016	3		1	3				1		1	2
2017	3		1	5	1	5		1	2		1
合计	9	1	3	9	6	9	1	2	3	1	3

9.2.2.3 本工程溢油事故发生概率

综上,本项目所在海区海况较复杂,附近海区存在船舶搁浅、碰撞和沉没的可能性;就船舶进出港而言,主要存在船舶碰撞的可能性。虽然东海岛堵海大堤的存在大大降低了施工船舶对湛江港港口航运区的影响,本项目使用施工船舶行驶速度慢,机械设备数量较少,但仍存在发生船舶溢油的风险。本项目海域环境风险的最大可信事故主要为船舶溢油事故。项目可能发生的典型事故的地方和原因识别见表 9.2.2.4。

表 9.2.2-4 港区各场所及其存在的危险有害因素识别

部位	设施	危险有害因素
航道	船舶	船舶间碰撞、恶劣海况、违规排放油污水

9.3 船舶事故溢油风险影响预测与评价

9.3.1 溢油泄漏漂移、扩散模式

事故风险的影响主要是泄漏的燃料油在水面形成油膜,并随风和水流向下游漂移。溢油扩散采用二维垂向平均溢油模型,其基于"油粒子"模型模拟溢油在水

体中的扩展、漂移和风化过程,"油粒子"模型就是把溢油离散为大量粒子,油膜就是由这些大量粒子组成的"云团",最后根据油膜的变化计算出溢油过程中其物理化学性质的变化。

本次计算是在水动力的基础上,基于欧拉-拉格朗日理论对各个时刻的油粒 子属性的变化进行计算,在计算过程中可以考虑输移过程和风化过程。

(1) 输移过程

油粒子的输移包括扩展、漂移、扩散等过程,这些过程是油粒子位置发生变化的主要原因,而油粒子的组分在这些过程中不发生变化。

1) 扩展运动

采用修正的 Fay 重力-粘力公式计算油膜扩展过程:

$$\left(\frac{dA_{oii}}{dt}\right) = K_a A_{oii}^{V3} \left(\frac{V_{oii}}{A_{oii}}\right)^{4/3}$$

式中, A_{nl} 为油膜面积, $A_{nl} = \pi R_{nl}^2$, R_{nl} 为油膜直径; K_{nl} 为系数;t为时间;油膜体积为 $V_{nl} = \pi \cdot R_{nl}^2 \cdot h_s$; h_s 为初始油膜厚度,取 10cm。

2)漂移运动

油粒子漂移的作用力主要为水流和风力,油粒子总漂移速度计算公式如下:

$$U_{\omega} = c_{\omega} \cdot U_{\omega} + U_{\varepsilon}$$

式中, U_{vi} 为油粒子总漂移速度; v_{w} 为风漂移系数,取值一般为 $0.03\sim0.04$ 之间; U_{w} 为水面上 10 米处的风速; U_{s} 为表面流速。

3)紊动扩散

假定水平扩散各向同性,一个时间步长内 α 方向上可能的扩散距离 $^{S_{\alpha}}$ 可表示为:

$$S_{\alpha} = [R]_{-1}^{1} \cdot \sqrt{6D_{\alpha} \cdot \Delta t_{p}}$$

式中, $\begin{bmatrix} R^{1} \\ 1 \end{bmatrix}$ 为-1 到 1 的随机数, D_{α} 为 α 方向上的扩散系数。

(2) 风化过程

油粒子的风化包括蒸发、溶解和形成乳化物等过程,在这些过程中油粒子的组分发生改变,但油粒子水平位置没有变化。

1)蒸发

油膜蒸发受油分、气温和水温、溢油面积、风速、太阳辐射和油膜厚度等因素的影响。假定:

- ①在油膜内部扩散不受限制(气温高于 0℃以及油膜厚度低于 5~10cm 时基本如此):
 - ②油膜完全混合;
 - ③油组分在大气中的分压与蒸汽压相比可忽略不计。

蒸发率可由下式表示:

$$N_{i}^{e} = k_{ei} \cdot P_{i}^{SAT} / RT \cdot \frac{M_{i}}{\rho_{i}} \cdot X \cdot \left[m^{3} / m^{2} s \right]$$

其中 N 为蒸发率; k_e 为物质输移系数; P^{SAT} 为蒸汽压; R 为气体常数; T 为温度; M 为分子量; ρ 为油组分的密度; i 为各种油组分。

2) 乳化

①形成水包油乳化物过程

油向水体中的运动机理包括溶解、扩散、沉淀等。扩散是溢油发生后最初几周内最重要的过程。扩散是一种机械过程,水流的紊动能量将油膜撕裂成油滴,形成水包油的乳化。这些乳化物可以被表面活性剂稳定,防止油滴返回到油膜。在恶劣天气状况下最主要的扩散作用力是波浪破碎,而在平静的天气状况下最主要的扩散作用力是油膜的伸展压缩运动。从油膜扩散到水体中的油分损失量计算公式如下:

$$D = D_{a} \cdot D_{b}$$

其中 D_a是进入到水体的分量; D_b是进入到水体后没有返回的分量。 油滴返回油膜的速率为

$$\frac{dV_{oil}}{d_{t}} = D_{a} \cdot (1 - D_{b})$$

②形成油包水乳化物过程

油中含水率变化可由下式平衡方程表示:

$$\frac{dy_{w}}{d_{t}} = R_1 - R_2$$

R₁、R₂分别为水的吸收速率和释出速率。

③溶解

溶解率用下式表示:

$$\frac{dV_{d\vec{s}i}}{d_{\star}} = Ks_i \cdot C_i^{\textit{sat}} \cdot X_{\textit{mo}\,\vec{b}} \cdot \frac{M_i}{\rho_i} \, A_{\textit{o}il}$$

其中 C_i^{mi} 为组分 i 的溶解度; K_{mol} 为组分 i 的摩尔分数; M_i 为组分汪的摩尔重量, $K_s=2.36\times 10^{-6}e$ 。

9.3.2 溢油泄漏预测工况组合

(考虑到大潮期间潮流流速较大,油膜在大潮期扩散范围最大,因此在流场验证良好的基础上,选择大潮期的水动力场作为计算流场。发生溢油事故的可能位置选取施工区域与航道交界处,以涨潮、落潮为起始点进行长时间预测(或抵岸为止)。

湛江海洋站地处季风区,累年平均风速 3.7 米/秒,年主导风向为东南东和东向,出现频率为 24%和 18%,风向和风速随季节变化明显。秋、冬季基本上盛行东向风,春季仍以东南东风居多,夏季盛行偏南季风,偏南风频率较大,达 35%。

项目属于红树林修复工程,红树林既属于本项目的建设内容也属于环境敏感目标,为了考虑在不利风条件的溢油事故对周边环境敏感目标的影响以及在不利风条件下溢油可能对海域的影响,本次预测中根据溢油点选取不利风进行预测,得出在不利风条件下的油膜漂移轨迹和扫海范围。根据项目所处位置,选取不利风向(W)作为本次溢油事故风向,同时考虑不利工况即6级大风时发生溢油事故。

工况	风速	风向	溢油时刻	溢油点			
工况 1	3.7	夏季 SSE	涨潮				
工况 2	3.7	冬季 E	涨潮	上於法之汇从			
工况 3	13.8	不利风 W	涨潮	与航道交汇处			
工况 4	3.7	夏季 SSE	落潮	-			

表 9.3.2-1 溢油泄漏扩散预测组合情况

工况 5	3.7	冬季 E	落潮
工况 6	13.8	不利风 W	落潮

9.3.3 溢油泄漏预测结果

根据预测模式计算大潮组合工况下溢油影响范围见表 9.3.3-1~9.3.3-2, 其中油膜漂移扩散包络线图见图 9.3.3-1。

从以上预测计算结果可见,在发生以上溢油事故后,对湛江湾周边海域水环境及生态环境产生一定影响,不利的潮型与风况组合下溢油,将对保护区产生影响。由于海上溢油事故对渔业生产影响较大,当溢油发生时海况与此不利海况相近时应及时安排溢油应急处置措施,并通知渔业区内相关养殖单位或项目业主。由于溢油事故发生的概率低,且本项目的施工量低于同区域开展的其他海上项目的施工,区域具备有较完善的应急防范措施,项目的环境风险总体可控。

表 9.3.3-1 油膜到达敏感地区和海岸线的时间统计

序号	风向	风况 风速 (m/s)	事故发生时刻	登岸地点	影响敏感 点与时间
)\(\[\ \ \ \ \ \ \ \ \ \ \ \ \	MAE (III/S)			
1	SSE	5.3		东海岛西岸	红树林, 4.3h
2	Е	3.1	涨潮	东海岛西岸	红树林, 5.2h
3	W	13.8		东海岛西岸	红树林,2h
4	SSE	5.3		无	无
5	Е	3.1	落潮	无	无
6	W	13.8		东海岛东岸	无

表 9.3.3-2 油膜扫海面积统计

序号	预	预测风况						
/, ,	风向	风速(m/s)	, , , , , , , , , , , , , , , , , , , ,	2h	6h	12h	24h	72h
1	SSE	5.3		0.212	1.240	1.370	/	/
2	Е	3.1	涨潮	0.176	0.835	1.197	/	/
3	W	13.8		0.531	2.101	3.426	/	/
4	SSE	5.3		0.194	1.575	2.057	3.419	19.640
5	Е	3.1	落潮	0.113	1.307	1.451	3.813	16.266
6	W	13.8		0.986	1.937	3.144	4.048	24.533

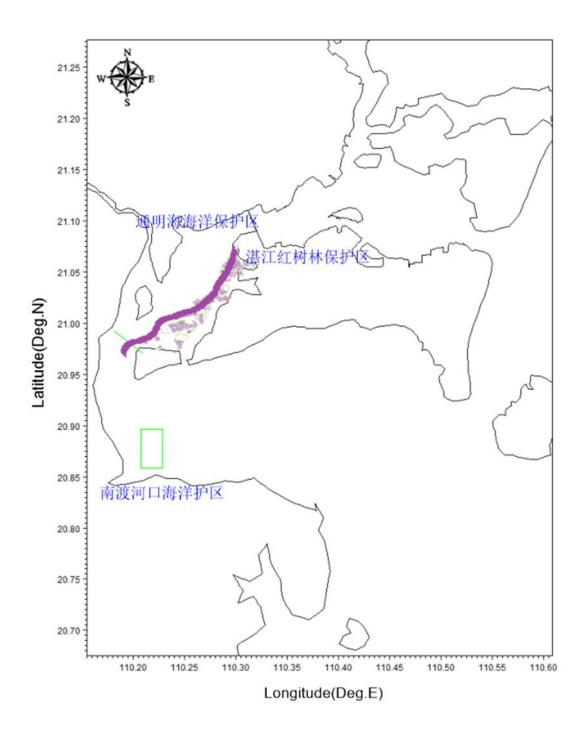


图 9.3.3-1 工况 11: 夏季 SSE 3.7m/s 涨潮溢油油膜漂移扩散轨迹图

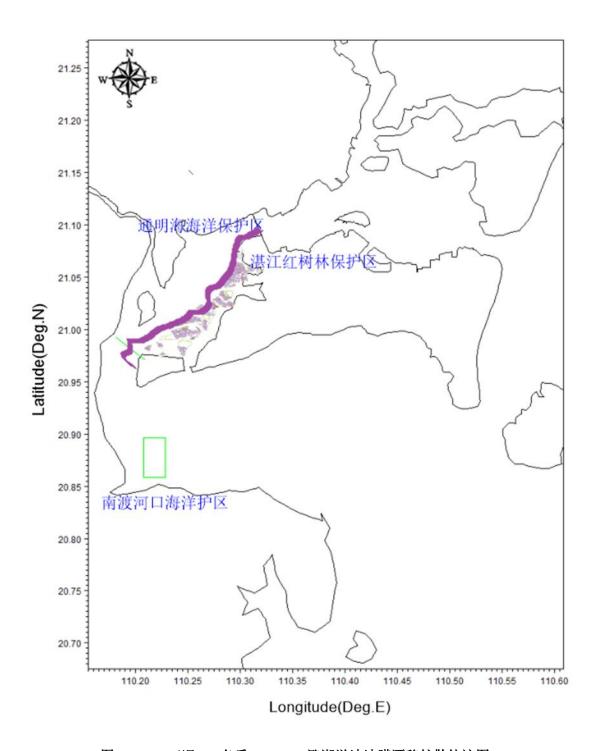


图 9.3.3-2 工况 2: 冬季 E 3.7m/s 涨潮溢油油膜漂移扩散轨迹图

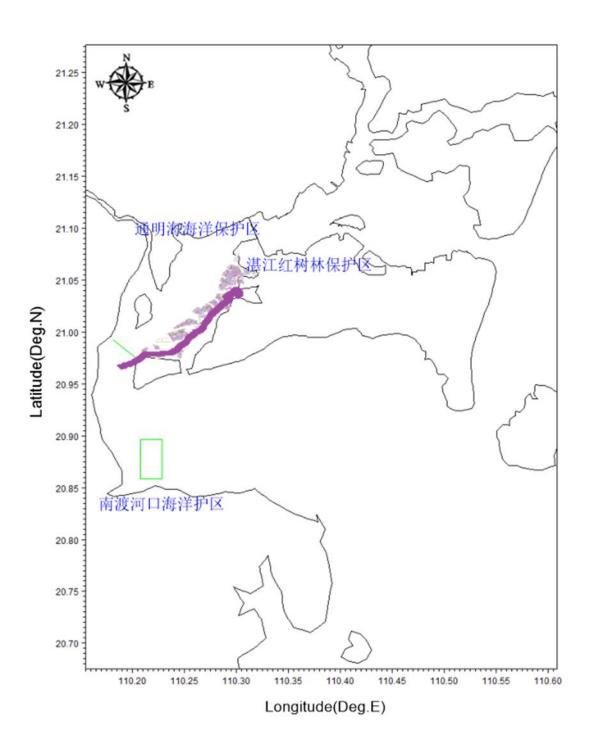


图 9.3.3-3 工况 3: 不利风 W 13.8m/s 涨潮溢油油膜漂移扩散轨迹图

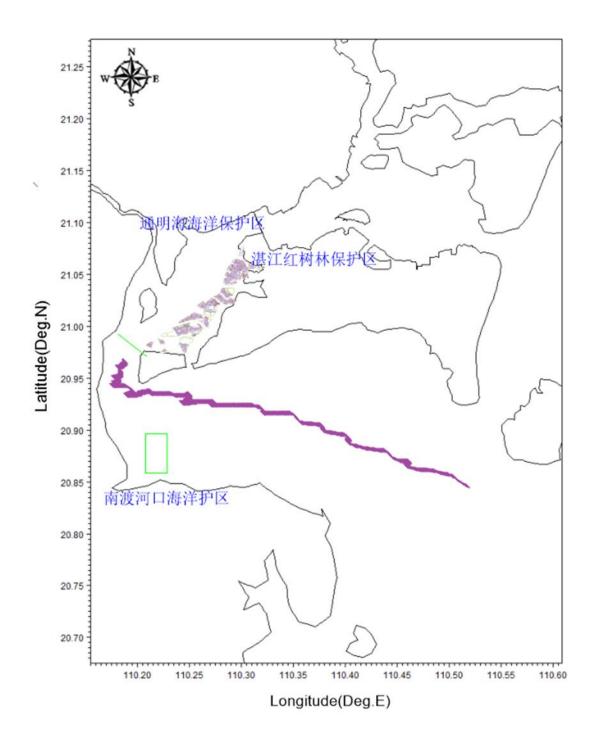


图 9.3.3-4 工况 4: 夏季 SSE 3.7m/s 落潮溢油油膜漂移扩散轨迹图

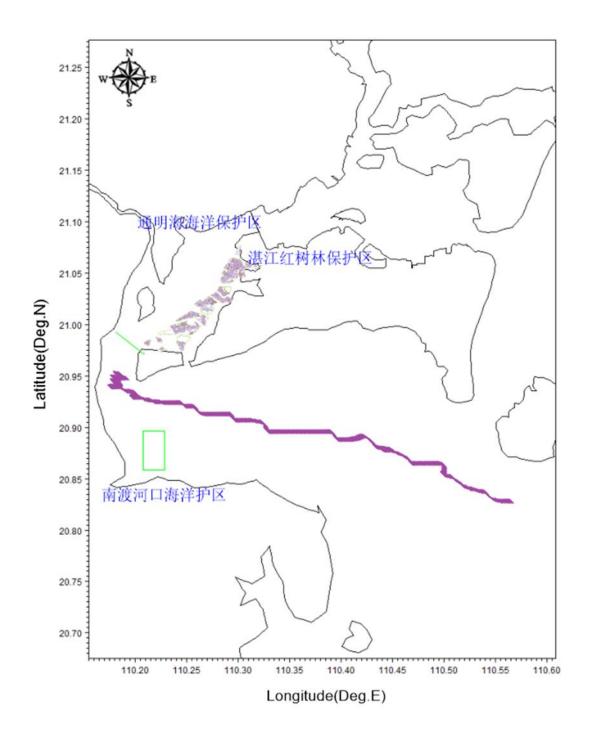


图 9.3.3-5 工况 5: 冬季 E 3.7m/s 落潮溢油油膜漂移扩散轨迹图

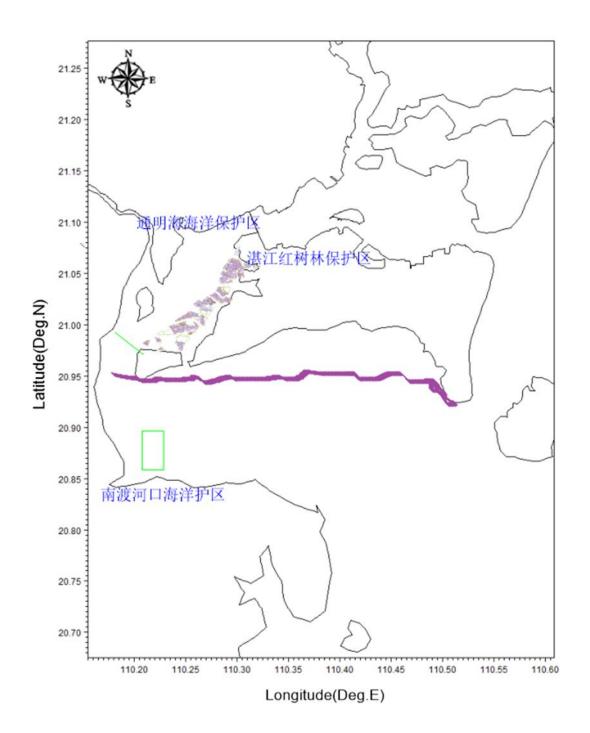


图 9.3.3-6 工况 6: 不利风 W 13.8m/s 落潮溢油油膜漂移扩散轨迹图

9.3.4 环境风险对周边环境敏感区保护区的影响

1、对海洋保护区、自然保护区的影响

本次预测溢油点选取航道交汇处,根据不同风况和事故发生时刻,模拟溢油油膜漂移扩撒轨迹。夏季 SSE 3.7m/s 涨潮情况下,油膜扩散至通明海海洋保护区和广东湛江红树林国家级自然保护区;夏季 SSE 3.7m/s 落潮情况下,油膜扩散对评价范围内的海洋保护区及自然保护区无影响。冬季 E 3.7m/s 涨潮情况下,

油膜扩散至通明海海洋保护区和广东湛江红树林国家级自然保护区;冬季 E 3.7m/s 落潮情况下,油膜扩散对评价范围内的海洋保护区及自然保护区无影响。不利风 W 13.8m/s 涨潮情况下,油膜扩散至通明海海洋保护区和广东湛江红树林国家级自然保护区;不利风 W 13.8m/s 落潮情况下,油膜扩散对评价范围内的海洋保护区及自然保护区无影响。

红树林赖以生存的是其潮滩底质,潮滩底质是红树林生长的根基。一旦发生油泄漏事故,油膜在风浪和潮汐等因素作用下,向岸滩漂移,涨落潮过程中可能有一定量的油膜粘附在滩涂,对红树林的生长是不利的,且存在长期、慢性的影响。

2、对生态保护红线的影响

本次预测溢油点选取航道交汇处,根据不同风况和事故发生时刻,模拟溢油油膜漂移扩撒轨迹。在夏季 SSE 3.7m/s、冬季 E 3.7m/s、不利风 W 13.8m/s 涨潮情况下,油膜均扩散至生态保护红线范围内,对其造成影响;而在夏季 SSE 3.7m/s、冬季 E 3.7m/s、不利风 W 13.8m/s 落潮情况下,油膜扩散对生态保护红线影响较小。生态保护红线位置详见图 2.8.1-3。

3、对岸线的影响

溢油点发生溢油时,油膜将扩散至东海岛人工岸线,一旦水面上的浮油在风 浪和潮汐等因素作用下,浮上岸边,便会堆积在高潮线附近,粘附在岸边岩土表 面,渗入上层的砂子里,这将对岸线生态环境造成严重影响。

4、对"三场一通道"的影响

因项目位于黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区,因此只要项目 发生溢油即会对前述保护区产生影响。

漂浮在海面的油膜易黏附在鱼卵和仔稚鱼表面,会使鱼卵不能正常孵化,仔稚鱼丧失或减弱活动能力,影响正常行为和生理功能,使受污个体沉降并最终死亡。海水中溶解油对鱼卵、仔稚鱼的危害主要是对生存系统的影响。海洋生物的幼体对石油类的毒性十分敏感,是因其神经中枢和呼吸器官都很接近其表皮,其表皮都很薄,有毒有害物质容易侵入体内。早期生命阶段的鱼卵和仔稚鱼对油污染的毒性最为敏感,油污染导致鱼卵成活率低,孵化仔鱼畸形率和死亡率增高,由此影响种群资源延续,造成资源补充量明显减少。

不同的油类对鱼类的毒性效应也不同,如胜利原油对鲻鱼幼体、真鯛仔鱼、哈牙鲆仔鱼的 96 小时半致死浓度分别为 6.5mg/L、1.0mg/L 和 1.6mg/L; 20#燃料油对黑鯛的 96 小时半致死浓度为 2.34mg/L。事故性溢油一旦发生,在其扩散区内,海水中的石油烃浓度将大大超过鱼卵、仔鱼的安全浓度(一般安全浓度) 96 小时的半致死浓度的十分之一),对浮性卵和漂浮的仔鱼造成严重伤害。如果溢油发生在鱼类的繁殖季节,那么对鱼卵、仔鱼的伤害程度则更为严重。

石油溢漏入海后形成的乳化油颗粒小,可吸附于鱼类的腮上,形成"黑腮",导致鱼虾呼吸障碍而死亡。石油类对鱼类的化学毒害方面主要表现在通过鱼鳃呼吸、代谢、体表渗透和生物链传递逐渐富集于生物体内,导致对鱼类的毒性和中毒反映。

相对于鱼卵和仔稚鱼而言,溢油事故对成体鱼类的影响相对较小,主要是由于大量油在海水表面以漂浮形态存在,而大多数鱼类是在中层和底层水中生活。另外,许多上层和中层鱼能逃避黑色油块,底层鱼凭视觉和嗅觉尽量不和下沉的油块接触。一般来说,如果溢油事故发生在开阔水域,鱼类伤害程度轻;若发生在半封闭或水体交换不良的水域,鱼类受损害程度重。

5、对养殖活动的影响

项目位于东海岛西岸养殖塘内,项目周边分布有多处养殖排,在夏季 SSE 3.7m/s、冬季 E 3.7m/s、不利风 W 13.8m/s 涨潮情况下,油膜扩散均会影响养殖场所。石油类对海洋生物的影响是多方面的,其中最明显的是直接致死效应。不同种类的海洋生物及不同生命阶段对石油类的敏感性和耐受能力亦不尽相同。一般来讲,石油类对大部分成体海洋鱼、虾、贝类的致死浓度为 1~100mgL,对较敏感的仔、幼体阶段的致死浓度为 0.1~1mg/L,大多数浮游藻类在 0.1~1mg/L 浓度中细胞死亡。某些藻类在 0.0001mgL 浓度中都会死亡。溢油产生的油膜将有部分进入海洋生态红线区并污染区内的水质。油膜扫过海洋生物成体、幼体和浮游藻类及表面游泳生物都将受影响,特别是在鱼类繁育期,幼鱼幼虾生产期发生的溢油事故,海域的生物资源损失将是较严重的。

9.3.5 溢油事故影响分析

本项目位于黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区内,一旦发生溢油,将立即影响该海域水质和底质环境,对海域生态资源造成影响。溢油主要影

响环境目标为岸线、红树林保护区和红线区及海域生态环境和生物资源。

1、对海洋生态环境的影响

(1) 溢油对海域水质和沉积物环境的影响

受溢油影响的海域,油膜覆盖在海水表面,可溶性组分不断溶于水中,在风浪的冲击下,油膜不断破碎分散,并与水混合成为乳化油,增加了水中的石油浓度。油膜覆盖下,影响水-气之间的交换,致使溶解氧减少,从而影响水的物理化学和生物化学过程。

溢油后,石油的重组分可自行沉积,或粘附在悬浮物颗粒中,沉积在沉积物表面。油块可在重力作用下沉降,从而影响沉积物表面物理性质和化学成分。

(2) 溢油对海域生物资源的影响

油膜覆盖下,影响水-气之间的交换,致使溶解氧减少,光照减弱,从而影响浮游动物、浮游植物及底栖生物的生长。而溶解及乳化后的油会对水生生物资源造成一定危害,沉积到地层的油类将对底栖生物造成严重影响。因此,一旦发生事故溢油且处理不及时,将对油膜扫过海域的水生生物资源造成一定影响,主要体现在溢油突发时的急性致死影响及围油、回收油不彻底而产生的长期慢性污染影响。

2、对海洋生物的影响

发生溢油时,大部分溢油浮于水面并扩散成油膜,油膜在海面的停留将影响海水与大气之间的物质交流和热交换,使海水中的含氧量、温度等因素发生较大的变化,促使浮游动物窒息死亡,并降低透光率,影响浮游植物的光合作用。当油污染较轻时,许多海洋生物虽不会立即被伤害,但它们的正常生理功能受到影响,使其捕食能力和生长速度下降,那些对污染抵抗性弱的种类将会减少或消失,从而破坏生态平衡。

(1) 对浮游植物的影响

实验证明,石油会破坏浮游植物细胞,损坏叶绿素及干扰气体交换,从而妨碍它们的光合作用。这种破坏作用的程度取决于石油的类型、浓度及浮游植物的种类。国内外许多毒性实验结果表明,浮游植物作为鱼虾类饵料的基础,其对各类油类的耐受能力均很低,浮游植物石油急性中毒致死浓度为 0.1~10mg/L, 一般为 1mg/L。对于更敏感的生物种类,即使油浓度低于 0.1mg/L 也会妨碍其细

胞的分裂和生长的速率。

(2) 对底栖生物的影响

不同种类底栖生物对石油浓度的适应性具有差异,多数底栖生物石油急性中毒致死浓度范围在 2.0~15mg/L, 其幼体的致死浓度范围更小。

软体动物双壳类吸收水中含量很低的石油,如:0.01ppm 的石油可能使牡蛎呈明显的油味,严重的油味可持续达半年之久。受石油污染的牡蛎会引起因纤毛鳃上皮细胞麻痹而破坏其摄食机制,进而导致死亡。

底栖生物的耐油污性通常很差,即使水体中石油含量只有 0.01ppm,也会导致其死亡。当水体中石油浓度在 0.01~0.1ppm 时,对某些底栖甲壳类动物幼体有明显的毒效。

(3) 对渔业资源的影响

石油溢漏入海后,以油包水或水包油的形式分散在水中,形成乳化油。乳化油颗粒小,可吸附于鱼类的腮上,形成"黑腮",导致鱼虾呼吸障碍而死亡。

石油类对鱼类的化学毒害方面主要表现在通过鱼鳃呼吸、代谢、体表渗透和生物链传递逐渐富集于生物体内,导致对鱼类的毒性和中毒反应,其症状表现为急性、亚急性和慢性。急性和亚急性中毒是指大剂量、高浓度的中毒反应,其症状证据要表现为致死性、神经性、对造血功能的损伤和酶活性的抑制;慢性中毒的影响,即使在小剂量、低浓度下,仍表现代谢毒性、生活毒性以及致癌、致畸、致突变等毒理效应。同时,发生溢油时,不仅表现在对渔业生物的损害和发育生长的影响,当海水中石油浓度达到一定含量时,就会使渔业生物致臭,不仅使鱼类失去鲜美的味道,更主要的是石油类富集于鱼体内,通过食物链危害人体健康。

相对于鱼卵和仔稚鱼而言,溢油事故对成体鱼类的影响相对较小,主要是由于大量油在海水表面以漂浮形态存在,而大多数鱼类是在中层和底层水中生活。另外,许多上层和中层鱼能逃避黑色油块,底层鱼凭视觉和嗅觉尽量避开和下沉的油块接触。一般来说,如果溢油事故发生在开阔水域,鱼类伤害程度轻;若发生在半封闭或水体交换不良的水域,鱼类受损害程度重。

突发性溢油对渔业资源带来的损害是多方面的。首先,污染可能引起该海区的鱼虾回避,造成捕捞产量的直接减产;其次表现为由于品质的下降造成产值损失。另外,溢油对于渔业资源的影响程度还受海区的水文、气象以及地理位置的

不同而不同,如果事故发生在产卵盛期和污染区正处于产卵场密集区,成鱼可以回避,但卵子和仔稚鱼难逃死亡的命运。

(4) 对渔业生产的影响

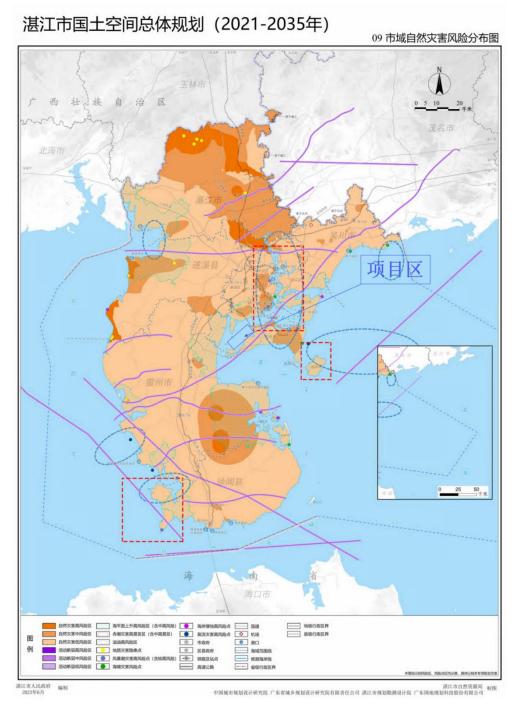
溢油事故对渔业资源的中、长期累积影响主要是造成渔业资源种类、数量及组成的改变,从而使渔业长期逐渐减产。这种影响在水域环境中可持续数年至十几年,因溢油规模及溢油地点而异。一般在近岸、河口或盐沼地发生溢油的恢复时间相对要长些。考虑到本项目油品为易挥发油品,一定时间内大部分可以挥发至大气,而且本项目配备了必需的溢油应急设施,出现溢油立即启动应急预案,可有效减轻溢油对水生生态和渔业资源的影响程度。

(5) 对岸线的影响

油膜抵达沙质或岩礁质海岸线时,油膜将较长时间粘附在海岸线上,对其生态系统将造成长期严重破坏,其恢复期可长达几年。

9.4 船舶碰撞风险分析

本项目施工期使用船舶运输施工会导致水域往来船只增加,当人为操作不当或配合不好、机械故障、恶劣天气等情况出现时,容易发生船只互相碰撞或碰撞护岸的事故,如果导致船只出现跑、冒、滴、漏现象便会污染水域环境并且对附近海域的水生生态环境造成一定的影响。


9.5 自然灾害风险分析

本项目施工区位于通明海海域,属于海平面上升高风险区(含中高风险), 详见 9.5-1 项目区与湛江市自然灾害风险分布图,且易受台风等自然灾害的影响。

台风、大风等引起的风暴潮主要表现为:海水异常升高,漫溢于陆地冲垮建筑物,淹没农田和人畜等。如果风暴潮恰好与影响海区的恰好与影响海区的天文潮的高潮相重叠,就会使水位暴涨,以至海水涌进内陆,造成巨大破坏。

施工期间,当风暴潮发生时,狂风夹着巨浪引起风暴潮增水,巨浪拍击海岸,对沿海海堤、公路都会造成严重的破坏,可能发生部分岸段受毁,并引起项目区内沙石流失。水位异常升高可能会导致潮水越过堤防涌入后方内陆,给项目陆上施工布置区造成破坏,尤其是当风暴潮与天文大潮叠加,可能会导致施工区域水

位异常增高,造成堤坝溃决或者垮塌,给工程施工造成严重破坏。可能会导致停留在施工区内的施工车辆、器械侧翻漏油,造成污染。

9.5-1 项目区与湛江市自然灾害风险分布图

9.6 赤潮风险分析

本项目位于东海岛西岸通明海海域,距离赤潮灾害高易发区(含中高易发) 较近,详见图 9.5-1 项目区与湛江市自然灾害风险分布图,发生赤潮危害的概率 较高。

赤潮生物是指能够大量繁殖并引发赤潮的生物,包括浮游生物、原生动物和细菌等,其中有毒、有害赤潮生物以甲藻类居多,其次为硅藻、绿色鞭毛藻、定鞭藻和原生动物等。根据 2024 年春季在工程附近海域生态调查结果,浮游植物的优势种类含有假微型海链藻、希罗鞘丝藻等赤潮生物,春季以硅藻门为主,共46 种,占总种数的 85.19%;蓝藻门有 5 种,占总种数的 9.26%;甲藻门有 2 种,占总种数的 3.70%;绿藻门有 1 种,占总种数的 1.85%。秋季在工程附近海域生态调查结果,浮游植物的优势种类含有链状假鱼腥藻、铜绿席藻 2 种,秋季以硅藻门为主,共46 种,占总种数的 85.19%,蓝藻门有 5 种,占总种数的 9.26%;甲藻门有 2 种,占总种数的 3.70%;绿藻门有 1 种,占总种数的 1.85%。甲藻多数为赤潮生物。除此之外,春季水质调查结果显示部分站位 pH值、生化需氧量、化学需氧量、活性磷酸盐、无机氮、粪大肠杆菌超标,其中主要超标因子为 PH值;秋季水质调查结果显示部分站位 PH值、生化需氧量、化学需氧量、活性磷酸盐、无机氮、粪大肠杆菌超标,其中主要超标因子为活性磷酸盐。因此,工程在实施过程中应关注工程附近海域水质环境的变化,并采取相应的防范措施,尽可能地避免赤潮的发生。

9.7 环境风险防范措施

9.7.1 船舶碰撞、溢油风险防范措施

(1) 严控船舶活动海域,设置安全标志

建设单位施工前需向海事部门申请水上作业施工许可证,工程建设应在批准的海域使用范围内进行,工程区域应设置醒目的安全标志。

(2) 重视施工管理,响应天气作业

建设单位应加强对施工单位施工作业和船舶机具的管理和监督,施工船舶施工前要向社会发布航行安全通告,严格按照《海上交通安全法》和《海上避碰章程》的规定航行和作业。施工作业应在适航的天气条件下进行。对于灾害性天气,应及时规避,尽可能避免遭遇和对峙,但应做好应急对抗准备。

(3) 树立安全观念,远离航行危险

船员在航行中要时刻树立安全第一的观念,保留充分的判断时间和行动时

间,不占用其它船舶的航行路线,对相遇的船舶采取宽让及早让的积极态度,与 他船保持足够距离,必要时减速、停船以争取判断和行动的时间等,即始终有效 地控制船舶处于安全的位置。

(4) 提高船员素质,实行值班制度

船员应该具备高超的技术水平、足够的责任心、较强的身心素质,从根本上提升船员的整体素质。定期对船员进行技术培训、对海员进行专业知识、信息能力、法律知识以及管理能力等方面的培训。安排人员在航行过程中进行值班,观察仪器和周围环境,做好时刻应对突发情况的准备,担负起安全航行的职责,同时实行轮班制保障值班人员在值班前有充足的睡眠及休息,让其能保持时刻清醒,需要长时间手操舵时应有两名舵工轮流操舵,同时正规瞭望,对发生的危机做出正确的判断与对策。

(5) 遵守航行规则

航行规则是避免船舶碰撞的"游戏规则",包括船务公司的航行规则、船员的值班规则、定线制、内河避碰规则、地方航行规则、分道航法等,这些都是避免船舶碰撞的专业技术行为的约定,以建立航行"安全秩序",必须严格遵守,避免船舶行进冲突造成碰撞。

(6) 正确使用航行仪器

船舶驾驶台有很多精密仪器,有不同的用途来保证航行途中的安全,所以船员必须严格按照规定正确地去使用这些仪器,将它们的功效发挥到极致。驾驶人员务必严格遵守海上避碰规则中有关使用雷达的规定,与来船协调避让行动时,应持谨慎态度,重复通话应清晰,完整,不可单方采取避让行动后要求他船服从本船的指挥。

(7) 配备应急设备

施工船舶上应配备和使用救生设备和消防设备,做好船舶维护和管理工作; 配备足够的溢油应急设备等。施工前与第三方溢油应急处置单位签订协议, 做好施工时发生溢油事故的应急准备。

(8) 制定应急计划, 健全应急演习制度

制定应急反应计划,应急反应计划应明确人员职责和关系,应急响应程序清楚,计划应包含货物移动和船舶横倾、机电失灵、船舶破损和船舶进水、灭火时

积水处理、溢油处理等单项。施工前开展事故演练和安全警示技能培训,开展仿真模拟事故现场应急训练,使船员综合运用有关知识和技能,熟悉群体配合。

9.7.2 自然灾害风险防范措施

建设单位/施工方应根据《中华人民共和国安全生产法》、《中华人民共和国突发事件应对法》等法律法规和国家海洋局《风暴潮、海浪、海啸和海冰灾害应急预案》、《广东省防汛防旱防风防冻应急预案》提出的应急预案措施等,制定适用于本工程自身的防台风和风暴潮应急预案,并应与上述预案相协调。

业主单位/施工方应建立统一、快速的应急防范机制,认真做好台风前的防风、抗风准备工作,应坚持从难、从严的原则,制定合理、科学、可行的防台措施;及时收集台风及热带风暴等消息,制定好施工船舶、施工机械的避风方案,配合海事机关做好防风管理工作;根据不同风力明确具体措施,实施有效的防灾减灾。

施工期间应尽量选择避开风暴潮季节,做好以下防范措施,以减轻灾害带来的损失:

- (1) 合理安排施工时间,避开台风多发期施工,使工程安全度汛。4~11 月 为热带气旋影响季节,施工期间,对工程各类设施都要做好防台风的安全措施, 切实加强监管。
- (2)建立施工区域范围内的观测点,由专人负责。每个施工场地由施工场地领队负责该项工作,随时掌握天气及潮水变化情况并进行统计记录。现场与施工总部保持联络,及时了解相关动态,遇紧急情况时,在接到通知后两小时内,迅速组织现场施工队伍撤离。
- (3)强化对进入该区域施工的施工队及负责人的安全防护意识的培训教育工作,做到平日施工有序,临风暴潮时服从命令,听从指挥,平稳撤离。
- (4)业主单位/施工方积极配合相关政府职能部门做好应对台风、暴雨等气象灾害的措施,当台风来临时,对施工船舶、机具进行妥善安置,避免热带气旋等恶劣天气带来的损失。

9.7.3 赤潮风险防范措施

防治赤潮污染, 最根本的是要从减少藻类繁殖所需的营养物质入手, 加大对

氮、磷污染的防治力度。如最大限度地减少生活污染源含磷污染物的排放,阻断或尽可能避免含磷污染物对近岸海域的污染。本工程生活污水纳当地生活污水一同处理入,不外排入海。施工废水沉淀后用于场地洒扫、洒水抑尘、车辆清洗等,不排入周边海域。

建议当地政府及有关管理部门对周边港区的船主、渔民进行环保意识宣传,禁止乱排乱放行为,有效控制渔船作业排放的各类污染物而导致赤潮生物增殖,减少赤潮发生。

9.8 风险事故应急预案

9.8.1 自然灾害应急措施

(1) 组织机构与职责

建设单位、施工方应设立防台风、防风暴潮指挥中心,负责防台风、防风暴潮的组织领导、监督监察、宣传教育工作,组织日常防台风、防风暴潮预案的制定及演练的组织工作。指挥中心要密切关注台风、风暴潮信息的预报,准确掌握其位置、风速、移动方向以及可能造成的影响,及时上报主管领导。当台风、风暴潮临近并有可能对工程安全生产造成重大灾害时,按有关规定及时召集指挥中心有关成员就位,同时按照指挥中心的指示做好防台风、防风暴潮和抢险救助的组织协调工作。

(2) 预案启动

当预报台风(热带气旋)、风暴潮等灾害性天气 48 小时内造成全区海上风力 10 级以上时,由防台风、防风暴潮指挥中心总指挥决定启动本预案。

(3) 预案实施

- 1)防台风、防风暴潮指挥中心,应根据防台风、防风暴潮预报警报,迅速部署应急防范措施,发布预警信息,并密切关注台风及风暴潮动向,保证通信联络畅通。
- 2) 防台风、防风暴潮指挥中心办公室应在台风、风暴潮影响前 24 小时由 指挥中心落实好抢险救助设施,备足各种防灾抗灾物资,完成应急抢险与施救的 准备工作。
 - 3) 所有施工船舶应在台风及风暴潮影响前 24 小时返港或就近择港避风。

4) 所有人员及施工船舶等要在台风、风暴潮影响前 12 小时强制撤离到安全区域。

(4) 监督检查

预案启动后,防台风、防风暴潮指挥中心应迅速组织防台风、防风暴潮督查组,于台风、风暴潮影响前 24 小时,检查防台风、防风暴潮工作,重点督查本预案执行情况、抢险与救助力量到位情况、应急措施落实情况,防风避风和生产人员转移及设施防范工作。对查出的安全隐患,应按照管理职责,责成责任部门立即整改。

(5) 预案中止

台风、风暴潮警报解除后, 预案即中止执行。

9.8.2 碰撞应急措施

(1) 尽量减轻碰撞损失

当两船即将发生碰撞时,操纵者必须沉着冷静,适当而果断地下令停船、倒船或抛锚,以尽力减少船舶运动速度,减轻碰撞力,并且妥善用舵,以减小碰撞角度,避免拦腰相撞。如果距离太近已经来不及背向他船转出,并且继续按此方向转动反而有可能加剧碰撞后果时,应该向他船转向,以减轻碰撞力和避免船尾与它船相撞。

(2) 应立即采取损害管制措施

有关人员检查船体,进行损害管制及抢救伤员和落水人员。若碰撞不严重, 应就近选择锚地抛锚,迅速而详细地了解碰撞的全过程,做好善后处理事宜。

(3) 尽力援救受损的他船

如发现他船已遭损坏,应遵守有关规定,停留在附近尽力援救对方。只有确定对方仍可航行后,方可驶离。

(4) 严重相撞情况下的措施

如船首插入他船船体或被他船插入,插入船不宜立即高速退离,否则可能扩大破口,使破损进一步恶化。因此在上述情况下,应在堵漏、加固并确信无危险情况后方可退出。万一损害严重,有沉没可能,如果在近岸地区应设法抢滩搁浅,并做好防沉的工作。

9.8.3 溢油应急预案

溢油将对海域环境发生严重的污染损害,事故发生后,能否迅速而有效地做 出事故应急反应,对于控制污染、减少污染对生态环境造成的损失以及消除污染 等都起着关键性的作用。

本工程应参照相关规定建立相关应急反应部门的应急通讯联络机制,制订本 单位对突发污染事故的应急反应对策。本项目突发事故应急预案纲要见下表,供 制定预案参考。

表 9.8.3-1 应急预案纲要

序号	项目	内容及要求
1	总则	
2	应急计划区	项目区及周边海域
3	应急组织	建立本项目的应急反应组织机构,包括建立单位内的应急反
	/	应领导小组,落实各级上级主管部门
		将污染事故分成一般、较大、重大、特大污染事故
4	预案分级响应条件	一般污染事故自行处理,较大、重大、特大污染事故启动上
		级预案,接受上级应急反应部门的领导
5	报警、通讯联络方式	规定应急状态下的报警通讯方式、通知方式
6	应急救援保障	主要依靠项目配备的应急设施和区域应急设备
7	紧急处置措施	制订应对各种突发情况的一般处置措施与程序
	事故应急救援关闭	规定应急状态终止程序
8	程序与恢复措施	规定事故现场善后处理,恢复措施
	生/了一/ / / / / / / / / / / / / / / / / / /	规定邻近区域解除事故警戒及善后恢复措施
9	应急培训计划	制订培训与演练计划
10	公众教育和信息	对邻近地区开展公众教育、培训和发布有关信息
		应急联络方式,包括本单位应急反应人员、专业应急救援队
11	附件	伍、敏感目标管理单位、上级应急主管部门等的有效联系方
		式、预案编制与更新等

由于溢油仅可能发生在施工期间,因此,建议施工单位或建设单位编制应急 预案,与主管海事和环保部门的应急预案进行衔接,列入海事和环保部门联系方 式。当污染事故发生时,有关人员应迅速将准确的事故信息上报至海事局和环保 部门,并根据海事和环保部门的指示,按照制定好的应急预案开展围塘的应急清 污行动。当附近码头的应急力量不足时,应请求海事和环保部门统一调配周边应 急力量, 共同完成事故风险控制工作。

1、应急指挥、救援机构职责和分工

施工期,施工单位应成立污染事故应急救援"指挥领导小组",小组由总指挥、副总指挥、现场指挥、副指挥组成,由现场施工经理担任总指挥,下设应急救援队伍。当现场发生重大事故时,以指挥领导小组为领导核心,应急救援队伍为救援骨干,全面负责污染救援的组织指挥和救援控制。

应急救援队伍由现场值班主管、现场人员、值班警卫组成。

- (1) 指挥领导小组的职责:
- ①负责本单位"预案"的制订、修改:
- ②组建应急救援专业队伍,并组织实施和演练;
- ③检查督促做好重大事故的预防措施和应急救援的各项准备工作。
- (2) 指挥部的职责:
- ①发生事故时和事故处理完毕后,分别由指挥部发布和解除应急救援命令、信号;
 - ②组织指挥救援队伍实施救援行动:
- ③向上级汇报和邻近单位通报事故情况,必要时向有关部门单位发出救援请求:
 - ④组织事故调查,总结应急救援工作经验教训。
 - (3) 应急救援队伍的职责:
 - ①现场工作人员都负有事故应急救援的责任;
- ②应急救援队伍是防泄漏污染应急救援的骨干力量,其任务主要是担负污染事故的现场救援以及尽最大努力防止污染扩散,将污染危害程度在最短时间里控制在最小范围内。
 - 2、应急救援保障

工程的应急设备应纳入附近海区的溢油应急防治系统内,作为需要调动区域 应急力量的较大、重大、特大污染事故的应急救援保障的组成部分。

3、建立事故应急反应计划和应急反应措施

考虑到溢油对海域环境的严重污染损害,建立快速科学有效的海上污染防治和应急反应体系是非常必要的。事故发生后,能否迅速而有效地做出事故应急反

应,对于控制污染、减少污染对生态环境造成的损失以及消除污染等都起着关键性的作用。为了将事故造成的损害降低到最低限度,制订和实施应急计划是唯一的选择。

(1) 应急计划主要内容

①明确组织指挥机构;②绘制该地区环境资源敏感图,确定重点优先保护区域;③加强溢出物污染跟踪监测,建立科学的污染预报分析等应急决策支持系统,能够进行事故危害范围和程度的计算机动态模拟、评估与显示;④了解区域清污设备器材储备,建立清污设备器材储备;⑤加强清污人员训练;⑥建立通畅有效的指挥通讯网络。

(2) 事故应急反应措施

本项目事故应急反应措施应在以下几个方面做好工作:

- ①建立健全的应急反应的组织指挥系统
- ②应急反应设施、设备的配备:了解区域应急反应设施、设备配备情况,建立畅通的联络通道。

③应急防治队伍及演习

根据本工程的特点,为减少人员及日常开支,除充分利用海事局系统原有应急防治力量外,可考虑充分利用本项目工作人员、消防人员共同参与形成应急防治队伍。对应急救援及清污队伍作定期强化培训和演练的计划,加强了解应急防治操作规程,掌握应急防治设备器材的操作使用,一旦发生应急事故,防治队伍能迅速投入防治活动,从而增强应付突发性溢油及化学品事故的处置能力。

④应急通讯联络

为确保本项目船舶突发性溢油污染事故的报告、报警和通报,以及应急反应各种信息能及时、准确、可靠的传输,必须建立通畅有效、快速灵敏的报警系统和指挥通讯网络,包括与海事局应急反应指挥系统、周围附近码头的联络,因为往往在应急反应过程中,能否及时对事故进行通报是决定整个反应过程和消除污染效果成败的关键。

⑤应急监视监测

事故的应急监视系统是通过监视手段,及时发现船舶溢油事故,迅速确定船舶事故发生的位置、性质、规模等,为应急反应对策措施及方案的选定提供依据。

此外针对工程特点,施工期和运营期除了海事局进行日常监视,还要充分依 靠群众举报,及时发现事故险情。

当发生事故时, 需启动应急监测方案, 具体见表 9.8.3-2。

表 9.8.3-2 应急监测计划

环境要素	监测项目	监测站位	监测频次
水质	pH、COD、DO、石油类或	在事故发生点周围	每4小时采样一次
小灰	事故排放的其他物质	设 4-6 个站位	直至达标
海洋生士	浮游植物、浮游动物、底栖	在事故发生点周围设	市井法阶户
海洋生态	生物、鱼卵仔鱼、游泳生物	4-6 个站位	事故清除后

(3) 污染事故控制现场操作预案

污染事故控制现场围控操作预案见图 9.8.3-1。

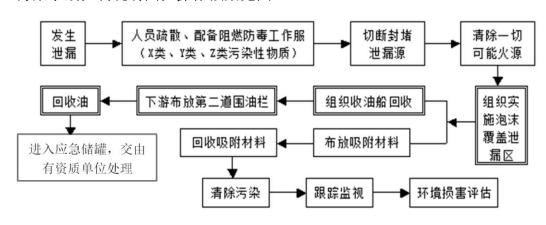


图 9.8.3-1 污染事故控制现场围控操作预案

(4) 事故后的污染清除、生态风险控制及恢复措施

①污染评估

在进行溢油泄漏应急事故的生态风险防控与污染清除工作之前,首先对事故作出以下评估:

可能受到威胁的岛礁、海滩、岸线和渔业资源等环境敏感区和易受损资源以 及需要保护的优先次序;

本地区应急反应的人力、设备、器材是否能满足应急反应的需要。

②应急反应行动

根据对应急事故的评估,应急指挥部应立即作出事故防控的应急对策。 指挥机构在接到报警后,根据初步情况,对外通报、联系支援; 采取措施防止可能引发的火灾、爆炸事故,如果船舶发生了溢油事故,根据溢出位置和原因,采取堵漏、拖浅等措施控制泄漏;派遣船艇对溢出物周围海域实行警戒或交通管制,监视溢出物的扩散。

对可能受到污染威胁的高生态风险的环境敏感区和易受损资源采取优先保护措施,若现场发生泄露,第一时间关闭水闸,并在事故点周围、下风、下流向铺设围油栏,阻止溢出物扩散和向敏感点转移;如事故点控制无效,应在到达敏感目标前,再设第二套防护的围油栏,防止第一套围油栏未围住的泄漏物进入海域。

对溢油事故水域和周围水域、沿岸进行监测,对危险品泄漏区域进行监测; 根据溢出物的性质和规模,迅速调动应急防治队伍、应急防治设备、器材等 以及必要的后勤支援;

组织协调海事、救捞、环保、海洋、水产、军队、公安、消防、气象、医疗等部门投入应急活动:

根据溢出物的类型、规模、溢出物的种类、溢出物扩散的方向、周围海域、大气的环境,指定具体的应急清除作业方案。

③污染清除及恢复措施

溢油事故清除作业是应急反应的直接现场作业,在现场指挥部的统一指挥下,组织调动人力物力,投入清除作业。清除作业包括溢出物的围控、回收、分散、固化、沉降、焚烧和生物降解等处理方法。清除设备器材主要有围油栏、围油栏铺设船、浮油回收船、撇油器、油拖网、吸油材料、溢油分散剂及其喷洒装置、固化剂、浮动油囊、油驳、铲车高压冲洗机等。

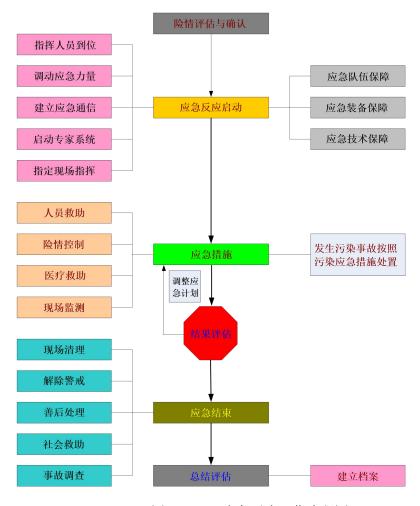


图 9.8.3-2 应急反应工作流程图

9.9 环境风险评价小结

本工程主要的环境风险源是施工期船舶溢油造成的水上溢油污染,风险物质为船舶燃料油。经分析,最可能发生的船舶污染事故的溢油量约为 12 吨。根据溢油数值模拟结果,在选定的典型情境下,溢油事故发生后,项目所在的通明海海洋保护区即刻受到溢油污染影响。建设单位应落实报告书提出的风险防范和应急措施,购买应急服务,同时配备满足溢油事故先期现场处置的应急物资,在编制溢油应急预案并加强日常培训和演练的前提下,可以有效降低溢油事故发生概率和污染后果,将溢油风险控制在环境可接受范围内。

10 项目建设与规划相符性分析

10.1 产业政策相符性分析

10.1.1 与产业政策的符合性分析

根据《产业结构调整指导目录(2024 年本)》(2023 年 12 月 27 日中华人民共和国国家发展和改革委员会令第 7 号公布),本项目属于鼓励类中"第四十二、环境保护与资源综合利用-2.生态环境修复和资源利用:矿山生态环境恢复工程,海洋环境保护及科学开发,海洋生态修复",不属于淘汰类和限制类。

根据《市场准入负面清单》(2022 年版)与市场准入相关的禁止性规定的禁止措施: "禁止在海洋生态红线区内实施围填海、采挖海砂、新增入海陆源工业直排口,以及其他可能对典型生态系统产生不利影响的开发利用活动。严格控制海洋生态红线区内河流入海污染物排放,控制渔业养殖规模"。本项目评价范围内涉及生态保护红线范围,本项目建设工程包括红树林种植、管护及地形改造等生态修复与治理措施,不涉及新增围填海、采挖海砂、不新增入海陆源工业直排口,不涉及内河污染物排放、渔业养殖。项目施工期会暂时对海洋生态造成影响,工程实施后将有效保护东海岛西岸湿地生态系统。因此,项目不属于与市场准入相关的禁止性规定。

综上, 本建设项目符合当前国家的产业发展政策。

10.1.2 与《湛江市人民政府关于完成"十四五"能耗双控目标的指导意见》的相符性分析

《湛江市人民政府关于完成"十四五"能耗双控目标的指导意见》中提出:(三)面对用能空间,严格节能审查约束,强化招商和新建高耗能项目对"十四五"时期能耗双控影响评估和用能来源、节能技术应用审查。严格执行《加强招商引资项目能耗双控评价工作指导意见》,对未落实用能指标的项目,节能审查一律不予批准。完善项目审批和节能审查协调联动机制,对能耗双控形势严峻、用能空间不足的县(市、区),实行高耗能项目审批、核准、备案和节能审查禁批或缓批或限批,确有必要建设的,须实行能耗减量置换。其中年综合能源消费量 5000

吨标准煤以上(含 5000 吨标准煤)的固定资产投资项目,其节能审查由省级节能审查部门负责。年综合能源消费量 1000 吨标准煤以上(含 1000 吨标准煤,或年综合能源消费量不满 1000 吨标准煤,但电力消费量满 500 万千瓦时)、5000 吨标准煤以下的固定资产投资项目,其节能审查由地级以上市节能审查部门负责。未通过节能审查的项目,相关部门不能办理施工、环评、用油、用地、取水等行政许可,项目不能开工建设。

本项目属于生态修复项目,运营期项目本身不产生污染物、不需要耗能,不属于耗能项目,更不属于高耗能项目,同时不属于《广东省"两高"项目管理目录(2022版)》中的"两高"行业、产品或工序,不需要办理节能审查, 因此本项目符合《湛江市人民政府关于完成"十四五"能耗双控目标的指导意见》中的相关要求。

10.2 占用方案与相关法律法规的相符性分析

10.2.1 与《关于在国土空间规划中统筹划定落实三条控制线的指导意见》相符性

文件明确,"生态保护红线内,自然保护地核心保护区原则上禁止人为活动, 其他区域严格禁止开发性、生产性建设活动,在符合现行法律法规前提下,除国 家重大战略项目外,仅允许对生态功能不造成破坏的有限人为活动,主要包括: 零星的原住民在不扩大现有建设用地和耕地规模前提下,修缮生产生活设施,保 留生活必需的少量种植、放牧、捕捞、养殖;因国家重大能源资源安全需要开展 的战略性能源资源勘查,公益性自然资源调查和地质勘查;自然资源、生态环境 监测和执法包括水文水资源监测及涉水违法事件的查处等,灾害防治和应急抢险 活动;经依法批准进行的非破坏性科学研究观测、标本采集;经依法批准的考古 调查发掘和文物保护活动;不破坏生态功能的适度参观旅游和相关的必要公共设 施建设;必须且无法避让、符合县级以上国土空间规划的线性基础设施建设、防 洪和供水设施建设与运行维护;重要生态修复工程。"

根据《关于建立以国家公园为主体的自然保护地体系的指导意见》,本项目部分海域占用了广东湛江红树林国家级自然保护区的实验区,属于自然保护区,保护区内进行红树林人工补种,属于保护区修复工程。本项目占用了生态保护红

线区,属"自然公园"。而自然公园按照"一般控制区"管理。因此项目选址占用了"自然保护地一般控制区",不属于"自然保护地核心保护区"。红线区内开展红树林种植工程,属于重要的生态修复工程。

因此,本项目建设符合《关于在国土空间规划中统筹划定落实三条控制线的 指导意见》的相关要求。

10.2.2 与《关于以改善环境质量为核心加强环境影响评价管理的通知》(环评[2016]150 号)相符性分析

根据《关于以改善环境质量为核心加强环境影响评价管理的通知》(环评〔2016〕150号),"三线一单"是以改善环境质量为核心,将生态保护红线、环境质量底线、资源利用上线落实到不同的环境管控单元,并建立环境准入负面清单的环境分区管控体系。

(1) 与生态保护红线及岸线相符性分析

根据《广东省自然资源厅 广东省生态环境厅 广东省林业局关于严格生态保护红线管理的通知(试行)》(粤自然资发〔2023〕11号)相关规定,生态保护红线内自然保护地核心保护区外,禁止开发性、生产性建设活动。再者,《广东省海洋生态红线》划定 13 类、268 个海洋生态红线区,确定了广东省大陆自然岸线保有率、海岛自然岸线保有率、近岸海域水质优良(一、二类)比例等控制指标。本项目位于广东湛江红树林国家级自然保护区实验区,红线范围内涉及生态红线保护区;项目占用东海岛部分人工岸线,评价范围内涉及部分金牛岛岸线。项目和岸线统计详见表 10.2.3-1,岸线与项目的位置关系见图 2.8.1-2,项目与生态保护红线的位置见图 2.8.1-3。

 类别
 名称
 距离和方位

 东海岛
 占用

 金牛岛
 西侧, 2.93km

 生态保护红线
 /
 位于

表 10.2.3-1 项目周边红线区和自然岸线统计表

本项目占用部分东海岛人工岸线,岸线用途为渔业岸线、围海养殖岸线,项目主要建设内容为红树林种植。项目实施有利于周边海域红树林的生态修复,红

树林种植将会形成新的生物岸线,项目建设不会破坏改变海岛岸线(滩)生态功能,相反有利于修复和提高海岛岸线(滩)生态功能。本项目不涉及围填海;不涉及违法侵占岸线和采砂。施工期将对占用的岸线造成一定的不利影响,但项目施工完成后有利于岸线保护与修复。

本项目临近的岸线为金牛岛岸线,主要用途为渔业岸线、围海养殖岸线、渔业基础设施岸线等,本项目为红树林营造修复工程,可以保持岸线属性、形态和生态功能,建设及营运过程不会对水文动力、冲淤环境产生明显影响,与周边岸线有一定距离,对周边岸线的影响很小,可以满足对项目周边的大陆岸线的管控要求。

项目部分位于广东湛江红树林国家级自然保护区,位于生态红线保护区内,为经湛江市自然资源局同意开展的红树林湿地生态修复系统治理项目,不涉及新增建设用地、用海用岛的允许有限人为活动。项目建设过程中对保护区造成的影响较小,项目建设完成后影响基本消失,且红树林修复将有效改善项目周边生态红线保护区范围的生态环境,改善生物生境,保持良好的生态多样性。

综上,本项目建设与生态保护红线及岸线的保护要求相符合。

(2) 与环境质量底线相符性分析

海洋环境质量现状调查表明,春季调查海域的 pH 值、无机氮、油类、化学需氧量、生化需氧量、活性磷酸盐及粪大肠菌群在部分站位超过相对应的功能区水质标准,秋季调查海域的活性磷酸盐、无机氮、化学需氧量、生化需氧量、pH 值及粪大肠菌群在部分站位超过相对应的功能区水质标准,其余均符合《海水水质标准》(GB3097-1997)第二类标准;海洋沉积物中油类、有机碳、硫化物、铬、锌、镉、铅、砷、汞、铜均达到第一类海洋沉积物质量标准。

本项目在施工期、抚育期产生的污染物通过采取有效措施,确保污染物达标排放,运营期基本无污染产生,不会对项目所在地的环境质量造成恶化,因此符合环境质量底线要求。

(3)项目与资源利用上线相符性分析

本项目生活用水由市政供水部门供应自来水,种植用水从海内抽取,用电由 市政电网供给,资源消耗量相对区域资源利用总量较少,符合当地规划要求,符 合资源利用上线要求。

(4) 项目与环境准入负面清单相符性分析

根据《市场准入负面清单》(2022 年版),本项目未列入《市场准入负面清单》(2022 年版),故项目与《市场准入负面清单》(2022 年版)要求相符。

10.2.3 与《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府〔2020年〕71 号)相符性分析

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府〔2020年〕71号〕的相关要求,广东省环境管控单元划分为优先保护单元、重点管控单元和一般管控单元三类。

优先保护单元:以维护生态系统功能为主,禁止或限制大规模、高强度的工业和城镇建设,严守生态环境底线,确保生态功能不降低。

重点管控单元:以推动产业转型升级、强化污染减排、提升资源利用效率为重点,加快解决资源环境负荷大、局部区域生态环境质量差、生态环境风险高等问题。

一般管控单元: 执行区域生态环境保护的基本要求。根据资源环境承载能力,引导产业科学布局,合理控制开发强度,维护生态环境功能稳定。

项目红线范围内涉及广东省环境管控单元中的优先保护单元、重点管控单元、一般管控单元,项目共涉及 12 个单元,分别为广东湛江红树林国家级自然保护区-一般控制区、湛江经济技术开发区一般生态空间、湛江麻章雷州湾地方级湿地自然公园、大气环境优先保护区(YS4408111310010、YS4408111310011)、建成区-东海岛-硇洲岛重点管控单元、湛江大型产业园区东海岛片区重点管控单元、大气环境高排放重点管控区(YS4408112310001、YS4408112310002)、经济技术开发区生态空间一般管控区、龙腾河湛江东海岛控制单元、通明海海洋保护区一般管控单元。项目与广东省"三线一单"管控单元叠图详见图 2.3.5-1,项目与广东省"三线一单"生态环境管控平台截图详见图 2.3.5-4~8。本项目为生态修复工程,项目在施工期产生的污染物如废气、废水、噪声、固体废物等,通过采取有效措施,确保污染物达标排放,不会对项目所在地的环境质量造成恶化,且项目工程实施后将有效保护项目周边海域生态系统,项目的建设满足《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府(2020 年)71 号)优先保护单元、重点管控单元和一般管控单元的总体管控要

求。

10.2.4 与《湛江市"三线一单"生态环境分区管控方案》、《湛江市 2023 年"三线一单"生态环境分区管控成果更新调整成果》相符性分析

对照《湛江市"三线一单"生态环境分区管控方案》湛江市经济技术开发区环境管控单元图 及《湛江市 2023 年"三线一单"生态环境分区管控成果更新调整成果》,本项目海域工程位于通明海海洋保护区(HY44080030010)、广东湛江红树林国家级自然保护区-一般控制区(HY44080010024)、湛江麻章雷州湾地方级湿地自然公园(HY44080010059),本项目陆域工程位于建成区-东海岛-硇洲岛重点管控单元(ZH44081120004)、湛江大型产业园区东海岛片区重点管控单元(ZH44081120001)。本项目工程与湛江市三线一单详细叠图详见图 2.3.5-2,由图中可知项目部分红树林种植工程位于广东湛江红树林国家级自然保护区优先保护单元内。湛江市近岸海域优先保护单元生态环境准入清单见表 10.2.4-1,重点管控和一般管控单元生态环境准入清单见表 10.2.4-2。

本项目属于红树林种植,不涉及新增围填海,不含养殖内容,仅施工期会对周边环境造成一定影响,属于破坏有限的人类活动,本项目施工期和营运期不在海域排放污水,且项目已制定了跟踪监测计划,符合《湛江市"三线一单"生态环境分区管控方案》及《湛江市 2023 年"三线一单"生态环境分区管控成果更新调整成果》。

表 10.2.4-1 项目与所在单元管控及管控措施符合性分析(优先保护单元)

	环境管控单	区域内		管控要求/区域布局管控	本项目与管控措施相符性分析	是否
单元编码	元名称	工程	分类			符合
				1-1.生态保护红线内,自然保护地核心保护区原则上禁止人为活动,	1-1 本项目位于保护区的实验区,不在核心区范围内,本项目为红树林营	
	广东湛江红			其他区域严格禁止开发性、生产性建设活动,在符合现行法律法规	造修复工程,属于生态修复工程,为减少对保护区的影响,保护区范围	
Y4408001	树林国家级	红树林	优先保护	前提下,除国家重大战略项目外,仅允许对生态功能不造成破坏的	内红树林采取人工种植方式,养殖水塘土方开挖转运至红树林种植区进	<i>bb</i>
0024	自然保护区-	种植	单元	有限人为活动。	行地形微改造,对原生态功能基本无影响。	符合
	一般控制区			1-2.严格保护珊瑚礁、海草床等典型海洋生态系统分布区,自然景	1-2 本项目属于生态修复工程,项目工程区域内未发现珊瑚礁、海草床、	
				观,中华白海豚、鲎类等珍稀濒危海洋生物物种及重要海洋生物的	白海豚、鲎等珍稀物种,项目实施有利于改善周边海洋生态系统环境,	
				洄游通道、产卵场、索饵场、越冬场、栖息地等各类重要海洋生态	净化水质,提升生物的生存环境,施工期污染物均可得到合理有效的处	
				区域。	置,施工期采取避开珍稀物种繁殖期、合理安排施工进度等措施。	
				1-3.在依法设立的各级自然保护区、湿地公园、重点湿地等特殊保	1-3 本项目部分区域位于现行有效的广东湛江红树林国家级自然保护区	
				护区域,应当依据法律法规规 定和相关规划实施强制性保护,不	(实验区),本项目为红树林营造修复工程,属于生态修复工程,项目	
				得从事不符合主体功能区定位的各类开发活动,严格控制人为因素	符合保护区主体功能区定位。	
				破坏自然生态。	1-4 本项目位于保护区的实验区,不在核心区范围内,本项目为红树林营	
	湛江麻章雷			1-4.在自然保护区的核心区禁止从事任何生产建设活动;在缓冲区,	 造修复工程,属于生态修复工程,符合保护区相关规划。	
HY44080	州湾地方级	退塘还	优先保护	禁止从事除经批准的教学研 究活动外的旅游和生产经营活动;在	 1-5 本项目为树林营造修复工程,无开矿、采石、修坟以及生产性放牧等	符合
010059	湿地自然公	林、地	単元	实验区,禁止从事除必要的科学实验、教学实习、参考观察和符合	 活动;不属于房地产、度假村、高尔夫球场等任何不符合主体功能定位	
	园	形改造		自然保护区规划的旅游,以及驯化、繁殖珍稀濒危野生动植物等活	 的建设项目和开发活动;无法律法规禁止的活动或者行为。	
				动外的其他生产建设活动。	 1-6 本项目为树林营造修复工程,无开(围)垦、 填埋或者排干湿地等	
				1-5.在湿地公园内,禁止开矿、采石、修坟以及 生产性放牧等,禁	 活动,不会截断湿地水源; 无挖沙、采矿活动;本项目施工期生活污水	
				止从事房地产、度假村、高尔 夫球场等任何不符合主体功能定位	 和船舶含油废水均收集上岸处理,各种收集上岸固废得到合理处置,不	
				的建设项目和 开发活动;禁止法律法规禁止的活动或者行为。	直接向海域排放污染物;本项目不属于房地产、度假村、高尔夫球场、	
				1-6.国家湿地公园内,禁止开(围) 恳、填埋或者排干湿地,禁止	 风力发 电、光伏发电等任何不符合主体功能定位的建设 项目和开发活	

		截断湿地水源;禁止挖沙、采矿;禁止倾倒有毒有害物质、废弃物、	动; 本工程部分位于保护区, 对保护区及周边的生态环境影响在施工期,
		垃圾;禁止从事房地产、度假村、高尔夫球场、风力发电、光伏发	施工结束后,影响结束。项目为生态修复工程,项目实施有利于改善周
		电等任何不符合主体功能定位的建设项目和开发活动;禁止破坏野	边海洋生态系统环境,净化水质。
		生动物栖息地和迁徙通道、鱼类洄游通道,滥采滥捕野生动植物。	1-7 本项目工程范围内退塘还林塘埂上的红树林,项目设计采取优化平面
		1-7.禁止非法移植、采挖、采伐红树林或者采摘红树林种子。	布置, 红树林营造一期工程中的 A1、A2、A3 区, 二期工程中的 A12、
		1-8.禁止采挖珊瑚和破坏珊瑚礁。	C08 养殖塘红树林进行原泥面补种;其余区块塘埂上的红树林尽量原地
		1-9.禁止擅自采集、加工、销售野生动植物及矿物质制品。	保护,根据养殖塘搞成和水闸改造,满足红树林生长和养殖需求,高程
			低于设计标高的通过抬高局部高程进行种植。
			1-8 本项目不涉及。
			1-9 本项目不涉及。

表 10.2.4-2 项目与所在单元管控及管控措施符合性分析(一般管控单元、重点管控单元)

环境管控 单元编码	环境管控单 元名称	区域内工程	要求类别	具体内容	符合性分析	是否 符合
HY440800 30010	通明海海洋保护区	退塘还 林 , 地形 改造	管控要求/ 区域布局 管控	1-1.开发利用海洋资源,应当根据海洋功能区划合理布局,不得造成海洋 生态环境破坏。	本项目为红树林树林营造生态修复工程,位 于通明海海洋保护区区域,对周边生态环境 的影响主要为施工期对海洋沉积物、底栖生 物的栖息环境占用及施工悬沙对周边生态环 境的影响,通过采取生态补偿及各项污染防 治措施,可减少施工期影响,施工期是短暂 的,随着施工结束,项目周边生态环境的不 良影响也消失。同时项目实施有利于修复项	符合

环境管控	环境管控单	区域内工	西北米 即	具体内容	符合性分析	是否
单元编码	元名称	程	要求类别	关 州	付責性分析	符合
					目区域及周边生态环境。	
					2-1 本项目建设占用部分海岛人工岸线,不涉	
					及自然岸线,施工期将对占用的岸线造成一	
			能源利用	4-1.保护自然岸线、亲水岸线和天然沙滩资源。	定的不利影响,且项目施工完成后将形成更	符合
					多的生态岸线,项目实施有利于岸线保护与	
					修复。	
					3-1 本项目不涉及海水养殖。	
			污染物排	2-1.海水养殖应当科学确定养殖密度,并应当合理投饵、施肥,正确使用	3-2 施工期生活污水、生活垃圾均收集上岸处	
			放管控	药物,防止造成海洋环境的污染。	理,生活污水依托当地居民生活污水处理设	符合
			灰百江	2-2.污水和生活垃圾必须科学处置、达标排放,禁止直接排入海域。	施,生活垃圾交由环卫部门处理,不直接排	
					入海域。本项目运营期无污染物产生。	
					本项目为红树林种植营造修复工程,种植的	
			环境风险	3-1.引进海洋动植物物种,应当进行科学论证,避免对海洋生态系统造成	品种均为广东省沿海地区广泛种植的品种,	符合
			管控	破坏	属于当地乡土品种,不会对海洋生态系统造	11 日
					成破坏。	
	建成区-东		管控要求/	1-1.单元内重点发展商贸金融、信息及餐饮娱乐业、旅游等现代服务业。	1-1 本项目不涉及。	
ZH4408112	海岛-硇洲	退塘还林,	区域布局	1-2.【产业/限制类】从严控制"两高一资"产业在沿海地区布局。	1-2 本项目为红树林营造修复工程,属于生态	符合
0004	岛重点管控	地形改造	管控	1-3.生态保护红线内,自然保护地的核心保护区原则上禁止人为活动,其	修复工程,不属于"两高一资"产业。	11 11
	单元		日江	他区域严格禁止开发性、生产性建设活动,在符合现行法律法规前提下,	1-3 本项目位于东海岛西岸养殖塘区域,位于	

环境管控	环境管控单	区域内工	要求类别	具体内容	符合性分析	是否
单元编码	元名称	程				符合
				除国家重大战略项目外,仅允许对生态功能不造成破坏的有限人为活动。	生态保护红线、保护区的实验区内,不在核	
				1-4.一般生态空间内,可开展生态保护红线内允许的活动;在不影响主导	心区范围内,本项目为红树林营造修复工程,	
				生态功能的前提下,还可开展国家和省规定不纳入环评管理的项目建设,	属于生态修复工程,为减少对保护区的影响,	
				以及生态旅游、畜禽养殖、基础设施建设、村庄建设等人为活动。	保护区范围内红树林进行人工种植,养殖水	
				1-5.建成区片区属大气环境受体敏感重点管控区,严格限制新建储油库、	塘区域土方开挖转运至种植区进行地形微改	
				产生和排放有毒有害大气污染物的建设项目以及使用溶剂型油墨、涂料、	造,基本不影响原有生态功能。	
				清洗剂、胶黏剂等高挥发性有机物原辅材料项目,鼓励现有该类项目逐步	1-4 本项目属于生态修复工程,属于生态保护	
				搬迁退出。	红线内允许的活动。	
				1-6.大气环境高排放重点管控区,引导工业项目集聚发展。	1-5 本项目工程部分位于湛江麻章雷州湾地	
				1-7.未达到土壤污染风险评估报告确定的风险管控、修复目标的建设用地	方级湿地自然公园,项目为红树林营造修复	
				地块,禁止开工建设任何与风险管控、修复无关的项目。	工程,属于生态修复工程,无高污染物产生	
					排放。	
					1-6 本项目不涉及。	
					1-7 本项目为经湛江市自然资源局同意开展	
					的红树林湿地生态修复系统治理项目,不涉	
					及新增建设用地、用海用岛的允许有限人为	
					活动。	
				2-1.【能源/禁止类】高污染燃料禁燃区范围内,禁止销售、燃用高污染燃	2-1 本项目不涉及。	
			能源利用	料,禁止新建、扩建燃用高污染燃料的设施;已建成的,应逐步或依法限	2-2 本项目不涉及。	符合

环境管控 单元编码	环境管控单 元名称	区域内工程	要求类别	具体内容	符合性分析	是否 符合
				期改用天然气、电或者其它清洁能源。 2-2.【水资源/限制类】严格控制地下水开采,保持地下水水位不低于海平面或者咸水区域的地下水水位;逐步压减硇洲岛地下水采水量,维持采补平衡。 2-3.【水资源/综合类】贯彻落实"节水优先"方针,发展节水型工业、农业、林业和服务业。	2-3 本项目种植用水使用海水,废水沉淀后可用于工地抑尘,严格执行"节水优先"方针。	
			污染物排 放管控	3-1.【大气/综合类】加强对涉 VOCs 行业企业的排查和清单化管控,推动源头替代、过程控制和末端治理。 3-2.【水/综合类】实施城镇生活污水处理提质增效,加快补齐生活污水收集和处理设施短板,基本消除城中村、老旧城区和城乡结合部生活污水收集处理设施空白区,按期完成市下达城市生活污水集中收集率、污水处理厂进水生化需氧量(BOD)浓度的增加值目标。 3-3.【水/限制类】平乐再生水厂、东简污水处理厂出水执行《城镇污水处理厂污染物排放标准》(GB18918)一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26)的较严值;城镇污水处理设施出水执行《城镇污水处理厂污染物排放标准》一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26)的较严值;城镇污水处理设施出水执行《城镇污水处理厂污染物排放标准》一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26)的较严值。	3-1.本项目不涉及。 3-2.本项目不涉及。 3-3.施工期生活污水、生活垃圾均收集上岸处理,生活污水依托当地居民生活污水处理设施,生活垃圾交由环卫部门处理,不直接排入海域、本项目运营期无污染物产生。	符合
			环境风险 管控	4-1.【风险/综合类】企业事业单位和其他生产经营者要落实环境安全主体 责任,定期排查环境安全隐患,开展环境风险评估,健全风险防控措施, 按规定加强突发环境事件应急预案管理。	4-1 项目按照相关规定建立环境风险应急预 案,保障项目顺利实行。 4-2 本项目不涉及。	符合

环境管控	环境管控单	区域内工	要求类别	具体内容	符合性分析	是否
单元编码	元名称	程	女 水 矢 加	共伴的台	19 日 年27 7月	符合
				4-2.【土壤/综合类】重点监管单位建设涉及有毒有害物质的生产装置、储		
				罐和管道,或者建设污水处理池、应急池等存在土壤污染风险的设施,应		
				当依法依规设计、建设、安装有关防腐蚀、防泄漏设施和泄漏监测装置,		
				防止有毒有害物质污染土壤和地下水。		

环境管控 单元编码	域内工 要求类别 程	具体内容	符合性分析	是否 符合
ZH4408112 0001	管控要求/ 区域布局 管控	1-1.【产业/鼓励引导类】重点发展钢铁、石化及其上下游配套产业,以及海工装备、新材料、新能源汽车、现代港口物流、商贸服务等生产性服务业。 1-2.【产业/禁止类】严格执行法律、法规、国务院决定等明确设立且与市场准入相关的禁止性规定,禁止引入国家产业政策明令淘汰和限制的产品、技术、工艺、设备及行为。 1-3.【生态/鼓励引导类】紧邻生态保护红线、一般生态空间的地块,优先引进无污染或轻污染的产业和项目。 1-4.【生态/禁止类】生态保护红线内,自然保护地的核心保护区原则上禁止人为活动,其他区域严格禁止开发性、生产性建设活动,在符合现行法律法规前提下,除国家重大战略项目外,仅允许对生态功能不造成破坏的有限人为活动。	1-1 本项目不涉及。 1-2 本项目施工工艺合理,选用污染性较低的设备和燃油,严格执行法律、法规、国务院决定等明确设立且与市场准入相关的禁止性规定。 1-3 本项目位于生态保护红线区内,属于广东湛江红树林国家级自然保护区,为生态修复类项目,仅施工期对生态环境造成较小影响,运营期无污染物产生。 1-4 本项目部分位于自然保护区实验区,不涉及核心区,仅施工期对生态环境造成较小影响,施工完成后有利于周边海域红树林生态系统的恢复。且项目为经湛江市自然资源局同意开展的红树林湿地生态修复系统治理项目,不涉及新增建设用地、用海用岛的允许有限人为活动。	符合

环境管控 单元编码	环境管控单 元名称	区域内工程	要求类别	具体内容	符合性分析	是否符合
			能源利用	2-1.【能源/限制类】入园企业应贯彻清洁生产要求,有行业清洁生产标准的新入园项目需达到国内清洁生产先进企业水平,其中"两高"行业项目须实施减污降碳协同控制,采用先进适用的工艺技术和装备,单位产品物耗、能耗、水耗等达到清洁生产先进水平;现有不符合要求的企业须通过整治提升满足清洁生产要求。 2-2.【能源/综合类】推进园区循环化改造,推动公共设施共建共享、能源梯级利用、资源循环利用和污染物集中安全处置等。 2-3.【能源/限制类】园区实行集中供热后,禁止新建、扩建燃用煤炭、重油、渣油、生物质等分散供热锅炉。 2-4.【水资源/限制类】严格控制地下水的开采,确保地下水水位不低于海平面或者咸水区域的地下水水位。	2-1 本项目不涉及。 2-2 本项目施工期产生废物集中上岸处理,不直排入海。 2-3 本项目不涉及。 2-4 本项目不涉及地下水开采。	符合
			污染物排 放管控	3-1.【其他/综合类】依法科学开展大型产业园区规划环境影响评价,园区规划环评应增加碳排放情况与减排潜力分析,推动园区绿色低碳发展。 3-2.【大气、水/限制类】园区主要污染物排放总量应控制在规划环评(规划修编环评/跟踪评价)控制要求以内。 3-3.【大气、水/综合类】园区按要求定期开展规划跟踪评价、年度环境管理状况评估,加强环境质量及污染物排放管控。 3-4.【大气/综合类】加强对园区内石化、装备制造等涉 VOCs 行业企业,原油、成品油、有机化学品等挥发性有机液体储罐和港口码头油气回收设施的排查和清单化管控,推动源头替代、过程控制和末端治理。 3-5.【大气/限制类】新建、改建和扩建涉 VOCs 重点行业项目,不推荐使用光氧化、光催化、低温等离子等低效治理措施,已建项目逐步淘汰光氧化、光催化、低温等离子治理设施。 3-6.【大气/限制类】园区内钢铁、石化等大气污染重点行业企业及锅炉项目,	3-1 本项目属于红树林湿地生态修复项目,建设完成后有利于推动绿色低碳发展。 3-2 本项目属于生态类项目,仅施工期产生少量污染物。 3-3 本项目运营期实行苗木管护,三年管护期内进行维护。 3-4 本项目不涉及。 3-5 本项目不涉及。 3-6 本项目不涉及 3-7 本项目施工船舶产生少量废气,处于合理范	符合

环境管控 环境管控 区域内工 要求类别 具体内容 单元编码 元名称 程	符合性分析	是否符合
应当采用污染防治先进可行技术,使重点大气污染物排放浓度达到国家和省的超低排放要求。 3-7.【大气限制类】车间或生产设施收集排放的废气,VOCs初始排放速率大于等于3千克/小时的,应加大控制力度,除确保排放浓度稳定达标外,还应实行去除效率控制,去除效率不低于80%。采用的原辅材料符合国家有关低 VOCs 含量产品规定的除外,有行业排放标准的技其相关规定执行。 3-8.【水/综合类】加快园区规划污水处理厂及配套管网建设。 4-1.【土壤/综合类】重点监管单位建设涉及有毒有害物质的生产装置、储罐和管道,或者建设污水处理池、应遗池等存在土壤污染风险的设施,应当依法依规设计、建设、安装有关防腐蚀、防泄漏设施和泄漏监测装置,防止有毒有害物质污染土壤和地下水。 4-2.【海洋/其他类】装卸油类的港口、码头、装卸站和船舶必须编制溢油污染应急均划,并配备相应的溢油污染应急设备和器材。 4-3.【风险/综合类】强化区域环境风险联防联控,建立企业、园区、区域三级联动环境风险防控体系,定期开展有毒有害气体监测和环境安全隐患排查,落实环境风险防控体系,定期开展有毒有害气体监测和环境安全隐患排查,落实环境风险应急预案。 4-4.【水/综合类】生产、储存危险化学品的企业事业单位,应当采取措施,防止处理安全生产事故过程中产生的可能严重污染水体的消防废水、废液直接排入水低	本项目不涉及。 如目不涉及。 项目不涉及。 项目施工期有2艘运输船,1艘挖泥船进行 ,按照相关规定编制溢油污染应急计划、并 相应的溢油污染应急设备和器材。 项目按照相关规定建立环境风险应急预案。 本项目产生的生活污水并入当地污水管网处 不直排入海。 本项目处于开阔地带,离居民点较远,产生 声较小,对周边环境影响较小。	符合

10.2.5 与《广东省自然资源厅关于印发海岸线占补实施办法(试行)的通知》(粤自然资规字【2021】4 号)相符性分析

根据广东省《海岸线占补实施办法(试行)》中"(一)海岸线占补是指项目建设占用海岸线导致岸线原有形态或生态功能发生变化,需要进行岸线整治修复,形成生态恢复岸线,实现岸线占用与修复补偿相平衡。2017 年 10 月 15 日粤府办〔2017〕62 号文印发后,在我省海域内申请用海涉及占用海岸线的项目,必须落实海岸线占补。具体占补要求为: ……建设占用海岛岸线的,按照 1:1的比例整治修复海岸线,并优先修复海岛岸线"

项目红树林种植占用部分东海岛人工岸线,项目本身是对海岸带的生态修复,建成后种植红树林面积 683.37 公顷,项目通过建设红树林可提升堤防洪纳潮等级,提升堤防岸线的生态效益,进一步完善区域防潮(洪)体系,恢复海岸带生态功能。

本项目建设与《广东省自然资源厅关于印发海岸线占补实施办法(试行)的通知》相符合。

10.2.6 与《近岸海域环境功能区管理办法》相符性分析

《近岸海域环境功能区管理办法》提出: "第七条 二类近岸海域环境功能区应当执行不低于二类的海水水质标准"。本项目部分位于近岸海域二类功能区,水质目标为二类,根据《湛江市环境保护规划(2006-2020)》,项目所在海域执行海水水质二类标准。"第十条 在一类、二类近岸海域环境功能区内,禁止兴建污染环境、破坏景观的海岸工程建设项目。"本项目为红树林湿地生态修复工程,属于非污染性项目。"第十一条 禁止破坏红树林和珊瑚礁。禁止在红树林自然保护区和珊瑚礁自然保护区内设置新的排污口。"本项目工程区域内未发现珊瑚礁;本项目为红树林营造修复工程,本项目部分区域位于广东湛江红树林国家级自然保护区(实验区),本项目不设置排污口,不会破坏红树林资源、生态环境或者对保护对象危害,项目建设不但不会改变红树林保护区的自然属性,且有利于促进红树林保护区的保护和建设。"第十三条 在近岸海域环境功能区内可能发生重大海洋环境污染事故的单位和个人,应当依照国家规定制定污染事故应急计划。"本项目施工期有 2 艘运输货船,4 艘绞吸式挖泥船,1 艘自航锚

艇,可能发生船舶碰撞产生溢油事故,建设单位在落实报告书提出的风险防范和应急措施,购买应急服务,同时配备满足溢油事故先期现场处置的应急物资,编制溢油应急预案并加强日常培训和演练的前提下,可以有效降低溢油事故发生概率和污染后果,将溢油风险控制在环境可接受范围内。

因此,本项目建设符合《近岸海域环境功能区管理办法》的相关要求。

10.3 规划相符性分析

10.3.1 与环境保护规划的符合性分析

10.3.1.1 与《"十四五"海洋生态环境保护规划》符合性分析

《"十四五"海洋生态环境保护规划》提出要"加快建立以国家公园为主体、自然保护区为基础、各类自然公园为补充的海洋自然保护地体系,……严守海洋生态保护红线,开展海洋生态保护红线勘界定标,实现红线精准落地。……加强珊瑚礁、红树林、海草床、牡蛎礁、河口、海湾、海岛等生态系统保护,维护和提升海洋生态系统质量和稳定性。严格保护自然岸线,清理整治非法占用自然岸线、滩涂湿地等行为。……加大"三场一通道"(产卵场、索饵场、越冬场和洄游通道)以及长江口等特殊区域的保护力度,有效保护候鸟迁徙路线和栖息地。"本项目为红树林湿地生态修复治理项目,位于生态保护红线、广东湛江红树林国家级自然保护区、通明海海洋保护区内,占用部分东海岛人工岸线,不涉及自然岸线。红树林湿地生态修复改造后,可有效减免区域洪潮灾害,改善区域红树林、浅海生境,改善水质状况,为区域内水生生物及鸟类提供良好的生存环境,有效保护生态系统,符合《"十四五"海洋生态环境保护规划》要求。

10.3.1.2 与《广东省生态环境保护"十四五"规划》的符合性分析

根据《广东省生态环境厅关于印发〈广东省生态环境保护"十四五"规划〉的通知》(粤环〔2021〕10号):

"第四章:强化减污降碳协同增效,推动经济社会全面绿色转型"之"第四节:提升气候变化适应能力":增强生态系统碳汇能力。以粤港澳大湾区世界级森林城市群、汕潮揭和湛茂阳国家级森林城市群建设、国家森林乡村为抓手.....强化近岸海域生态系统保护与修复,加强红树林和海草床的保护修复,提

升海洋碳汇能力……

"第七章:强化陆海统筹,加快建设美丽海湾"之"第二节:加强海洋生态保护修复":推进海洋生态恢复修复。开展重点海域生态环境调查与评估,掌握我省海洋生态环境本底状况。加强重点河口海湾生态系统修复,推进汕头南澳、阳江闸坡海滩生态修复试点。加大湿地保护修复力度,加强湛江红树林、南澎列岛等国际重要湿地恢复与保护......

"第九章:加强生态保护监管,筑牢南粤生态屏障"之"第二节:推动实施重大生态保护修复工程":加强重要生态系统保护修复。....到 2025 年,湿地保护率不低于 52%。实施滨海湿地恢复、魅力沙滩建设、海堤生态化、自然岸线和红树林等典型海洋生态系统修复工程......

"专栏 8:生态保护修复重大工程":1.重要生态系统保护修复工程.....实施雷州半岛热带季雨林与滨海湿地保护修复重大工程,加强湛江重点海湾环境综合整治......实施红树林保护修复专项行动计划,到 2025 年,完成营造和修复红树林面积 8000 公顷,其中,营造红树林 5500 公顷,修复红树林 2500 公顷......。

本项目是红树林湿地生态修复项目,项目建设将有效改善通明海海洋保护区 受损、退化的红树林生境,推进了湛江红树林湿地保护与恢复。综上,项目符合 《广东省生态环境保护"十四五"规划》。

10.3.1.3 与《广东省海洋生态环境保护"十四五"规划》符合性分析

《广东省海洋生态环境保护"十四五"规划》规划提出,以习近平新时代中国特色社会主义思想为指导,全面落实党的十九大和十九届历次全会精神,深入贯彻习近平生态文明思想,认真落实习近平总书记对广东重要讲话和重要指示批示精神,围绕美丽广东、海洋强省的建设目标,以"双区建设""双城联动"为引领,以海洋生态环境质量持续改善为核心,聚焦建设美丽海湾主线,坚持精准治污、科学治污、依法治污,坚持保护与修复并举,坚持系统治理、陆海统筹,持续改善海域环境质量,逐步提升海洋生态系统稳定性,打造宜居宜业宜游滨海空间,健全海洋生态环境现代化治理体系,以海洋生态环境高水平保护助推沿海经济带高质量发展,不断满足人民群众日益增长的优美海洋生态环境需要。

规划提出,建立完善海洋生态环境分区管控体系。统筹布局和优化提升海洋生产、生活、生态空间,提高人工岸线利用效率,严格限制建设项目占用自然岸

线。推进海洋垃圾治理。建立健全海洋垃圾监管与清理机制,推动沿海城市落实 岸滩垃圾和海湾、港口海漂垃圾清理责任,建立长效工作机制。构筑蓝色海洋生 态屏障。加强重要河口、海湾、海岛以及红树林、珊瑚礁、海草床等典型海洋生 态系统保护修复,推进沿海防护林、生态海堤等海岸防护体系建设,构筑蓝色海 洋生态屏障。

本项目为红树林营造修复工程,营造红树林约 683.37 hm²,是对当地红树林 典型海洋生态系统保护修复,有效改善通明海海洋保护区受损、退化的红树林生境,推进了湛江红树林湿地保护与恢复。因此,本项目符合《广东省海洋生态环境保护"十四五"规划》要求。

10.3.1.4 与《湛江市海洋生态保护"十四五"规划》的符合性分析

根据《湛江市海洋生态环境保护"十四五"规划》: "第五章:坚持保护修复并重,维护海洋生态安全和稳定"之"第二节:保护海洋生物多样性,提升生态系统碳汇能力":提升生态系统碳汇能力。加强湛江红树林、雷州九龙山湿地等具有碳汇功能的天然湿地保护,实施红树林营造及修复工程,强化海草床、珊瑚礁等海洋生态系统的保护修复,不断提升海洋碳汇能力······

"第五章:坚持保护修复并重,维护海洋生态安全和稳定"之"第五节生态优先,打造红树林之城":加强红树林保护修复。对现有红树林实施全面保护,逐步清退广东湛江红树林国家级自然保护区内的养殖塘等开发性、生产性建设设施,恢复红树林自然保护地生态功能,进一步提升红树林生态修复与保护的管理水平。加强红树林保护区的整体保护、系统修复、综合治理,全面提升红树林生态系统质量和稳定性……

本项目位于东海岛西岸通明海区域内的养殖塘,部分位于广东湛江红树林国家级自然保护区,为红树林湿地生态修复项目,主要建设活动为退塘还林、进行红树林种植,项目实施后可修复红树林面积 683.37 hm²,项目实施有利于岸线保护与修复。因此,本项目建设符合《湛江市海洋生态保护"十四五"规划》中的相关规划。

10.3.1.5 与《湛江市生态环境保护"十四五"规划》的符合性分析

根据《湛江市生态环境保护"十四五"规划》:

"第四章:推进减污降碳,加快经济社会发展绿色转型""第五节:提升城市应对气候变化韧性"之"20.提升生态系统碳汇能力".....综合实施红树林造林及修复、沿海基干林带改造提升、高质量水源林建设.....加强湛江红树林、雷州九龙山湿地等具有碳汇功能的天然湿地保护,强化海草床、珊瑚礁等海洋生态系统的保护修复,提升海洋碳汇能力。推动海洋碳汇资源规模化、产业化和生态化发展"

"第十章:厚植生态底蕴,巩固提升雷州半岛生态优势""第五节:全力建设湛江"红树林之城""85.大力实施红树林保护修复。以打造全国闻名的"红树林之城"作为新时期湛江生态建设的重心,引导全社会共建、共管、共护红树林生态系统。加快制定《湛江市红树林保护与修复总体规划(2021-2025)》,有序实施红树林造林与修复,逐步完成自然保护地内的围塘等开发性、生产性建设活动的清退,恢复红树林自然保护地生态功能,到2025年,完成现有红树林修复1370公顷,红树林造林2813公顷.....

项目为红树林修复工程,项目拟种植红树林面积 683.37 公顷,符合《湛江市生态环境保护"十四五"规划》要求。

10.3.2 与国民经济和社会发展规划的符合性分析

10.3.2.1 与《广东省沿海经济带综合发展规划 (2017-2030 年)》的符合性分析

《广东省沿海经济带综合发展规划(2017-2030 年)》"第二节强化陆海生态系统保护":严格保护具有重要生态功能区域,加强陆海统筹自然保护区体系建设,强化生态修复,健全跨陆海生态监测和管控机制,促进陆海生态系统的健康发展。

"三、加强陆海生态工程建设":深入开展新一轮绿化广东大行动……实施海洋生态修复工程,分类建设美丽海湾,至 2020 年逐步实现各沿海市均建成至少 1 个美丽海湾……重点推进中山南朗、江门银洲湖、湛江廉州湾和湛江港、阳江程村和海陵湾、汕尾梅陇、潮州海山等 8 个红树林滨海湿地的红树林保护和修复工程建设……

项目为红树林湿地生态修复工程,湿地位于湛江港附近,项目建设加强了红

树林生境修复,推进了湛江红树林湿地保护与恢复。因此,本项目符合《广东省沿海经济带综合发展规划(2017-2030年)》要求。

10.3.2.2 与《广东省海洋经济发展"十四五"规划》的符合性分析

《广东省海洋经济发展"十四五"规划》中第六章 推动海洋经济绿色高效发展,第一节 高水平保护与修复海洋自然资源"整体保护海洋生态环境 ……重点推动入海河口、海湾、滨海湿地与红树林、珊瑚礁、海草床等多种典型海洋生态类型的系统保护,促进海洋生物资源恢复和生物多样性保护"。广东省海洋经济发展"十四五"规划重大工程项目——(五)海洋生态保护工程2重要海湾生态系统保护修复项目范围包括大亚湾一大鹏湾、靖海湾、柘林湾、红海湾、广海湾、阳江湾、水东湾、博贺湾、雷州半岛,涉及龙岗、盐田、惠阳、惠东、惠来、陆丰、海丰、阳西、江城、电白、徐闻、遂溪、廉江、雷州、麻章、霞山、坡头、赤坎等18个县(市、区),红树林种植686.6公顷,恢复滨海湿地286.6公顷,营造鸟类栖息生境30.5公顷,岸堤生态化12.21千米,生态化岸线42.4千米,沙滩整治32千米,海岸带整治29.6千米。

本项目区位于东海岛西岸,属于通明海海域,为红树林湿地生态修复项目,工程位于东海岛西岸养殖塘区域内,通过工程手段营造植物适宜生长环境和红树林种植,红树林修复面积 683.37 hm²。项目建设完成后可更好地保护湿地生态系统,增加湿地生物多样性,促进海洋生物资源恢复和生物多样性保护。因此,本项目的建设符合《广东省海洋经济发展"十四五"规划》相关内容。

10.3.2.3 与《湛江市国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》的符合性分析

根据 2021 年 8 月湛江市人民政府制定的《湛江市国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》,第十三章 保护蓝天绿水青山实现人与自然和谐共生中"第五节实施海洋生态环境高水平保护加强海洋生态整治修复。严格落实自然岸线保有率管控目标,加强海岸线利用动态监测,严控围填海等开发建设活动。重点开展生态修复与养护、滨海景观构建、海岸防护能力建设等。以海东新区为试点建设海岸带保护利用综合示范区,持续推进红树林湿地恢复与保护,加强徐闻珊瑚礁、流沙湾海草床、吴川水产种质资源保护区及重要海

洋海岛生态系统保护修复。以湛江湾、吴川金海岸等海湾为重点,加快建设一批美丽海湾"。

本项目为红树林湿地生态修复项目,项目主要建设内容为在东海岛西岸养殖塘区域内,通过工程手段营造植物适宜生长环境和红树林种植,红树林修复面积683.37 hm²,项目实施有利于东海岛西岸海岸生态修复、海域保护,提高海岸防护能力。因此项目符合《湛江市国民经济和社会发展第十四个五年规划和2035年远景目标纲要》相关规划。

10.3.3 与区域和行业规划的符合性

10.3.3.1 与《中华人民共和国自然保护区条例》(1994 年发布, 2017 年第二次修订)的符合性分析

根据《中华人民共和国自然保护区条例》(1994年10月9日中华人民共和国国务院令第167号发布,2017年第二次修订):

第十八条:自然保护区可以分为核心区、缓冲区和实验区.....缓冲区外围划为实验区,可以进入从事科学试验、教学实习、参观考察、旅游以及驯化、繁殖珍稀、濒危野生动植物等活动。

第二十六条 禁止在自然保护区内进行砍伐、放牧、狩猎、捕捞、采药、开垦、烧荒、开矿、采石、挖沙等活动;但是,法律、行政法规另有规定的除外。

第三十二条 在自然保护区的核心区和缓冲区内,不得建设任何生产设施。 在自然保护区的实验区内,不得建设污染环境、破坏资源或者景观的生产设施; 建设其他项目,其污染物排放不得超过国家和地方规定的污染物排放标准。在自 然保护区的实验区内已经建成的设施,其污染物排放超过国家和地方规定的排放 标准的,应当限期治理;造成损害的,必须采取补救措施。

项目为红树林生态修复工程,工程涉及广东湛江红树林国家级自然保护区实验区范围(广东湛江红树林国家级自然保护区分布情况见"图 2.8.1-4 项目与广东湛江红树林国家级自然保护区位置关系图"),不涉及缓冲区和核心区。

同时,项目不涉及砍伐、放牧、狩猎、捕捞、采药、开垦、烧荒、开矿、采石、挖沙等活动。施工期产生的大气污染主要为施工船舶和机械、车辆产生的废气,但项目区空间开阔,且施工选用污染较轻的器械和燃油,排放值符合条例要

求;此外,施工期产生的生活废水并入当地的污水管网一同处理,含油废水经统一收集后交由有处理资质的单位进行处理,不直排入海。红树林种植完成后,项目区域不存在污染环境、破坏资源或者景观的生产设施。因此,本项目符合《中华人民共和国自然保护区条例》(1994年发布,2017年第二次修订要求)。

10.3.3.2 与《关于加强国土空间生态修复项目规范实施和监管管理的通知》自然资办发〔2023〕10 号的相符性分析

根据《关于加强国土空间生态修复项目规范实施和监管管理的通知》(〔自 然资办发(2023)10 号〕) "三、严格遵守法律法规":

- (一)严守永久基本农田保护红线和生态保护红线……严格落实《自然资源部农业农村部国家林业和草原局关于严格耕地用途管制有关问题的通知》(自然资发〔2021〕166号)、《自然资源部生态环境部国家林业和草原局关于加强生态保护红线管理的通知(试行)》(自然资发〔2022〕142号)等要求。实施生态修复项目过程中,不得擅自调整耕地和永久基本农田布局,不得损毁耕地,不得违反生态保护红线管控规则。
- (三)严格用海用岛规定……实施生态保护修复项目,不得违背自然规律, 采用人工干预方式建设人造沙滩;不得改变自然岸线的海岸形态和生态功能;人 工岸线生态化建设应尽量达到生态恢复岸线的认定标准。

本项目为红树林湿地生态修复项目,主要进行红树林生态修复工程,项目区均位于东海岛红树林,不涉及基本农田和耕地,项目红树林修复区涉及广东湛江红树林国家级自然保护区实验区范围,属于生态红线区,详见图 2.8.1-3 项目与湛江市国土空间控制线(永久基本农田、生态保护红线)位置关系图。

同时,项目无人工方式建设人造沙滩的活动,项目建设未涉及自然岸线,且 红树林种植完成后,项目涉及的人工岸线得到恢复。因此,本项目的实施符合《关 于加强国土空间生态修复项目规范实施和监管管理的通知》自然资办发〔2023〕 10号的要求。

10.3.3.3 与《自然资源管理工作中若干底线要求(第二版)》粤自然 资函〔2023〕212 号的相符性分析

根据《自然资源管理工作中若干底线要求(第二版)》粤自然资函〔2023〕212

号"自然资源工作中知底线、守底线、不越线"的相关要求:在推进自然资源工作时,要认真贯彻落实国家、省决策部署,坚守底线,坚持节约优先、保护优先、自然恢复为主的方针,严守自然资源管理工作底线;增强自然资源领域底线思维和法治观念,提高对耕地管控、生态保护的极端重要性的认识,强化依法用地意识。要加强对项目建设用地需求的统筹协调,坚持绿色发展理念,从源头上遏制违法用地、用林、用海行为发生。

项目区涉及生态保护红线,但项目属于红树林湿地生态修复项目,不属于开发性、生产性建设活动,根据《关于同意开展湛江经开区红树林湿地生态修复系统治理项目的意见》(湛自然资(保护地)〔2024〕62 号),项目不涉及新增建设用地、用海用岛的允许有限人为活动。因此,不会触及自然资源底线,本项目的实施符合《自然资源管理工作中若干底线要求(第二版)》粤自然资函〔2023〕212 号的要求。

10.3.3.4 与《全国重要生态系统保护和修复重大工程总体规划(2021—2035 年)》的符合性分析

国家发展改革委 自然资源部于 2020 年 6 月 3 日印发《全国重要生态系统保护和修复重大工程总体规划(2021—2035 年)》(以下简称《规划》),《规划》提出海岸带生态保护和修复重大工程:推进"蓝色海湾"整治,开展退围还海还滩、岸线岸滩修复、河口海湾生态修复、红树林、珊瑚礁、柽柳等典型海洋生态系统保护修复、热带雨林保护、防护林体系等工程建设,加强互花米草等外来入侵物种灾害防治。其中:粤港澳大湾区生物多样性保护属于海岸带生态保护与修复重点工程,要求:推进海湾整治,加强海岸线保护与管控,强化受损滨海湿地和珍稀濒危物种关键栖息地保护修复,构建生态廊道和生物多样性保护网络,保护和修复红树林等典型海洋生态系统,提升防护林质量,建设人工鱼礁,实施海堤生态化建设,保护重要海洋生物繁育场。推进珠江三角洲水生态保护修复。

本项目属于红树林湿地生态修复工程,项目选取的红树林品种为当地乡土品种,与本项目区红树林生境条件基本一致,项目建成后可有效改善通明海红树林生境,因此,项目符合《全国重要生态系统保护和修复重大工程总体规划(2021—2035年)》。

10.3.3.5 与《中华人民共和国湿地保护法》的相符性分析

为了加强湿地保护,维护湿地生态功能及生物多样性,保障生态安全,促进生态文明建设,实现人与自然和谐共生,制定《中华人民共和国湿地保护法》。

表 10.3.3-1 本项目与《中华人民共和国湿地保护法》相关内容符合性分析

具体内容	本项目对照分析情况	是否 符合
部门应当采取措施,预防和控制人为活动对湿地及其生物多样性的不利影响,加强湿地污染防治,减缓人为因素和自然因素导致的湿地退化,维护湿地生态功能稳定。在湿地范围内从事旅游、种植、畜牧、水产养殖、航运等利用活动,应当避免改变湿地的自然状况,并采取措施减轻对湿地生态功能的不利影响。	本项目主要建设内容为红树林湿地地形改造、苗木种植、管护等,项目建设基本上不会改变湿地的自然状况。施工期和运营期的	符合
第二十八条 禁止下列破坏湿地及其生态 功能的行为: (一)开(围)垦、排干自然湿地,永久 性截断自然湿地水源; (二)擅自填埋自然湿地,擅自采砂、采 矿、取土; (三)排放不符合水污染物排放标准的工	(一)本项目无该项活动; (二)本项目潮沟取土仅用于种植区的高程改造垫高。 (三)本项目施工期施工人员住宿与办公租用附近民房,生活污水纳入当地生活污水一同处理,施工废水沉淀后用于场地洒扫、洒水抑尘等,废水、污水不直接排放;施工固废分类收集处置不排放,生活垃圾由环卫部门运至垃圾处理厂集中处理;船舶作业产生的废油、残油等危险废物统一交由有危险废物处理资质的单位处理。 (四)本项目无该项活动; (五)本项目为湿地保护、湿地修复项目,	符合

成一定影响,但该影响是短暂的,施工结束 后该影响也结束。无其他破坏湿地及其功能 的行为。

第三十四条禁止占用红树林湿地。经省级以上人民政府有关部门评估,确因国家重大项目、防灾减灾等需要占用的,应当依照有关法律规定办理,并做好保护和修复工作。

禁止在红树林湿地挖塘,禁止采伐、采挖、 移植红树林或者过度采摘红树林种子,禁 止 投放、种植危害红树林生长的物种。因 科研、医药或者红树林湿地保护等需要采 伐、采挖、移植、采摘的,应当依照有关 法律法规办理。

项目红树林修复工程区域内的红树林主要分布在退塘还林区,为了保护现状红树林,本项目进行优化设计,于种植斑块两侧潮沟开挖取土转挖至种植斑块内部进行地形改造,有利于红树林的种植与生长。项目施工无采伐、采挖、移植红树林或者过度采摘红树林种子、投放、种植危害红树林生长的物种的行为。

符合

综上分析,本项目与《中华人民共和国湿地保护法》是相符的。

10.3.3.6 与《广东省湿地保护条例》的符合性分析

根据《广东省湿地保护条例》(2021年1月1日起施行):

第二十六条:除法律法规有特别规定的以外,禁止在湿地范围内从事下列活动: (一)围垦、开垦、填埋湿地; (二)排干湿地或者永久性截断湿地水源; (三)擅自挖塘、挖砂、采砂、采矿、取土、取水、烧荒; (四)直接排放未经处理或者排放不达标的污水,倾倒、储存、堆放有毒有害物质、废弃物、垃圾,投放可能危害水体、水生以及湿生生物的化学物品; (五)破坏鱼类等水生生物洄游通道,采用电鱼、炸鱼、毒鱼、绝户网等灭绝性方式捕捞鱼类以及其他水生生物; (六)破坏野生动植物的繁殖区、栖息地、原生地和迁徙通道,滥采滥捕野生动植物; (七)引进、放生外来物种; (八)擅自放牧、捕捞; (九)采伐林木,采集国家或者省重点保护的野生植物; (十)猎捕保护的野生动物或者捡拾掏取鸟蛋; (十一)其他破坏湿地及其生态功能的活动。

第二十八条: 县级以上人民政府应当采取措施,防止湿地遭受破坏和生态功能退化。因历史原因、公共利益或者重大自然灾害等,导致湿地面积减少、生态功能退化,经科学论证确需恢复的,湿地所在地县级以上人民政府应当及时采取

措施予以修复。

由上可知,本项目为红树林生态修复项目,不涉及第二十六条中的禁止从事活动;同时,项目所在区域的现状红树林湿地退化严重,湿地面积减少,生态功能退化,需要采取措施予以修复。因此,项目符合《广东省湿地保护条例》的要求。

10.3.3.7 与《红树林保护修复专项行动计划(2020-2025 年)》的符合性分析

2020 年 8 月,自然资源部、国家林业和草原局联合印发《红树林保护修复专项行动计划(2020-2025 年)》(自然资发(2020)135 号),简称《行动计划》,明确了 2020 年-2025 年红树林保护修复的基本原则、行动目标和任务安排。《红树林保护修复专项行动计划(2020-2025 年)》提出:实施红树林生态修复:

- ——科学营造红树林。在红树林资源现状调查的基础上,科学论证、合理确定红树林适宜恢复地。在自然保护地内养殖塘清退的基础上,优先实施红树林生态修复,坚持宜林尽林,优先选用本地红树物种,扩大红树林面积。
- ——修复现有红树林。统筹开展现有红树林生态系统中林地、潮沟、林外光滩、浅水水域等区域的修复,特别是对人工纯林、有害生物入侵、生境退化的红树林等进行抚育,采取树种改造、有害生物清除、潮沟和光滩恢复等措施,对红树林生态系统进行修复,提高生物多样性。
- ——加强后期管护。对新营造的红树林采取严格的保育措施,落实管护责任,对成活率不达标或分布不均的地块进行补植。根据红树林生长规律,定期对红树林营造质量及成效进行评价。营造一年后,对其成活率、生长情况等进行评价;营造三年后,对其保存面积、林分健康状况等进行全面评价,根据评价结果,制定和落实后续保护修复措施。

本项目种植区块 683.37hm²,项目拟在选中区域内进行红树林补种,选用乡土树种白骨壤、秋茄、红海榄、桐花树等。种植后 3 年内进行管护、保育,对成活率不达标或分布不均的地块进行补植。及时清理造林地内及缠绕在幼苗、幼树上的垃圾杂物、海藻等,对造林地内出现的油污及时进行有效处理,有利于周边红树林生态系统的维护和整治。

因此,本项目符合《红树林保护修复专项行动计划(2020-2025 年)》中的相关要求。

10.3.3.8 与《广东省红树林保护修复专项行动计划实施方案》的符合性分析

2021 年 3 月,广东省自然资源厅、广东省林业局印发《广东省红树林保护修复专项行动计划实施方案》(粤自然资发〔2021〕6 号),简称《实施方案》,提出到 2025 年,完成营造和修复红树林面积不少于 8000 公顷,其中在现状红树林外围营造红树林不少于 5500 公顷,修复现有红树林不少于 2500 公顷的工作目标。

本项目为红树林湿地生态修复项目,营造红树林约 683.37 hm²。故本项目符合《广东省红树林保护修复专项行动计划实施方案》(粤自然资发〔2021〕6 号)。

10.3.3.9 与《广东湛江红树林国家级自然保护区管理办法》的符合性分析

本项目部分工程位于广东湛江红树林国家级自然保护区的实验区内,本项目与保护区的位置关系图详见图 2.8.1-4, 工程主要分布在东海岛西岸养殖塘内。

《广东湛江红树林国家级自然保护区管理办法》中"第四条 市人民政府及 其主管部门应当将红树林保护区生态建设纳入国民经济和社会发展规划,采取 有利于发展的政策措施,支持红树林保护区建设和管理,协调解决红树林保护区 保护发展中的重大问题。""红树林保护区内禁止进行下列活动:(一)毁林 挖塘、填埋造地、围堤、采矿、采沙、取土、放牧等破坏、侵占红树林湿地的 行为;(二)从事水产养殖、畜禽饲养;(三)向区内排放有毒有害污水,投放 可能危害水体、水生及湿生生物的化学物品,倾倒生活垃圾、建筑垃圾、蚝壳蚝 桩等固体废弃物;(四)采用电、炸、毒及绝户网等方式捕捞作业;(五)擅自 修建阻水、排水设施截断红树林湿地的水系与外围水系的贯通;(六)擅自移动 或者破坏界碑、界桩、护栏、护网、标识牌、保护标志等管护设施;(七)未经 批准在实验区内组织旅游活动,修建旅游设施或者其它用途的构筑物;(八)其 他破坏红树林资源、生态环境或者对保护对象造成危害的行为。"

项目建设单位为湛江开发区新月发展有限公司,项目修复营造红树林约

683.3 7hm²。 项目属于红树林营造修复项目,不属于从事水产养殖、畜禽饲养项目;项目实施过程中废水、固废等均得到有效处置,不向区内排放有毒有害污水,投放可能危害水体、水生及湿生生物的化学物品,倾倒生活垃圾、建筑垃圾、蚝壳蚝桩等固体废物;项目禁止施工人员任何方式捕捞活动;项目无修建阻水、排水设施截断红树林的水系与外围水体的贯通;项目禁止施工人员擅自移动或者破坏管护设施,无组织旅游活动,修建旅游设施或其他用途的构筑物。

本项目为红树林湿地生态修复工程,不会破坏红树林资源、生态环境或者对保护对象危害。项目建设不会改变红树林保护区的自然属性,施工完成后有利于促进红树林保护区的保护和建设,符合《广东湛江红树林国家级自然保护区管理办法》中相关要求。

10.3.3.10 与《广东省环境保护条例》(2022 年修正版)的相符性分析

根据《广东省环境保护条例》(2022 年修正版):第四十七条在依法设立的各级自然保护区、风景名胜区、森林公园、地质公园、重要水源地、湿地公园、重点湿地以及世界文化自然遗产等特殊保护区域,应当依据法律法规规定和相关规划实施强制性保护,不得从事不符合主体功能区定位的各类开发活动,严格控制人为因素破坏自然生态和文化自然遗产原真性、完整性,在进行旅游资源开发时应当同步建设完善污水、垃圾等收集清运设施,保护环境质量。

通明海自然保护区主体功能区定位为: "1.保护通明海红树林"。而项目为红树林湿地生态修复工程,采取种养耦合的方式营造红树林 683.37hm²,项目建设完成后可有效改善通明海受损、退化的红树林生境,因此项目符合通明海自然保护区主体功能区定位的管理要求。综上所述,本项目符合《广东省环境保护条例》(2022 年修正版)要求。

10.3.4 与城市发展规划的符合性

10.3.4.1 与《湛江市国土空间总体规划(2021-2035)》的符合性分析

《湛江市国土空间总体规划(2021-2035)》 指出坚持节约优先、保护优先、

自然恢复为主的方针,统筹山水林田湖草自然资源保护利用与修复,严格河湖水域空间管控,实施森林、水、湿地、海洋等生态系统修复。科学推进造林绿化工作,加快建设"绿美湛江"。做好海洋资源保护利用,加强海岸带保护利用管控,推动海岛分类保护,实现陆海统筹发展。构建"一链两屏多廊"生态保护格局,积极开展红树林湿地生态修复工作,强化对湿地资源的保护和管理。

项目位于生态红线区,位置详见图 2.8.1-3,但项目属于红树林营造和生态修复工程,属于"积极开展红树林湿地生态修复工作,强化对湿地资源的保护和管理",对于当地生态建设具有重要意义,因此,项目符合《湛江市国土空间总体规划》要求。

10.3.4.2 与《湛江经济技术开发区(东海岛)国土空间总体规划(2021-2035)》的符合性分析

规划指出构建"一带五廊多斑"生态空间格局,强化产城组团防护隔离;构建西部湿地生态屏障,严格保护广东湛江树林国家级自然保护区;严格保护湿地资源:划定重要湿地保护范围,重点加强广东湛江红树林国家级自然保护区和湛江麻章雷州湾地方级湿地自然公园湿地资源保护;因地制宜修复退化湿地,科学营造和修复红树林,提高湿地生态系统功能;推进自然保护地生态修复:重点对通明海红树林保护区内红树林修复。本项目开展红树林营造工程,符合该规划的要求。

10.3.4.2 与《湛江港总体规划》的符合性分析

综合考虑国家、区域、广东省及湛江市发展形势要求,结合湛江市城市、产业等规划,本次规划湛江港形成"绕一湾环半岛辖十二区"的总体发展格局,即湛江港环湛江湾绕雷州半岛发展,划分为调顺岛、霞海、霞山、宝满、坡头、南三岛、东海岛、吴川、雷州、徐闻、遂溪、廉江等十二个港区。其中,宝满港区、东海岛港区、徐闻港区和雷州港区乌石作业区为四个重点发展港区(作业区)。

东海岛港区发展定位和功能为:重点为腹地经济和大型工业发展服务,拓展物流功能,以大宗原材料、能源物质运输为主,兼顾杂货、集装箱运输功能,逐步发展为大型化、规模化、集约化的综合性港区。

因此,本项目建设与《湛江港总体规划》不相冲突。

10.4 与海域相关规划相符性分析

10.4.1 与海洋主体功能区划的符合性

《中华人民共和国海域使用管理法》第四条规定:国家实行海洋功能区划制度。海域使用必须符合海洋功能区划;第十五条规定:养殖、盐业、交通、旅游等行业规划涉及海域使用的,应当符合海洋功能区划。沿海土地利用总体规划、城市规划、港口规划涉及海域使用的,应当与海洋功能区划相衔接。

10.4.1.1 与《全国海洋主体功能区规划》的符合性分析

国家海洋局在 2015 年 8 月印发了《国务院关于印发全国海洋主体功能区规划的通知》(国发〔2015〕42 号)),根据该"通知",海洋主体功能区按开发内容可分为产业与城镇建设、农渔业生产、生态环境服务三种功能。依据主体功能,将海洋空间划分为以下四类区域: ①优化开发区域,是指现有开发利用强度较高,资源环境约束较强,产业结构亟需调整和优化的海域。②重点开发区域,是指在沿海经济社会发展中具有重要地位,发展潜力较大,资源环境承载能力较强,可以进行高强度集中开发的海域。 ③限制开发区域,是指以提供海洋水产品为主要功能的海域,包括用于保护海洋渔业资源和海洋生态功能的海域。④禁止开发区域,是指对维护海洋生物多样性,保护典型海洋生态系统具有重要作用的海域,包括海洋自然保护区、领海基点所在岛屿等。该区域的管制原则是,对海洋自然保护区依法实行强制性保护,实施分类管理;对领海基点所在地实施严格保护,任何单位和个人不得破坏或擅自移动领海基点标志。

项目用海所在海域属于通明海海洋保护区、广东湛江红树林自然保护区实验 区范围,应对海洋自然保护区实行强制性保护。项目为红树林营造修复项目,营造红树林约 683.37 hm²。项目建设后可有效抵御风浪,提高海岸的灾害防护能力,保护沿海农田和养殖塘,提高生物多样性和养殖产量,有利于加强对该区域海洋生态系统的保护。因此,本项目的建设与《全国海洋主体功能区规划(2015 年)》对禁止开发区域的保护要求相符合。

10.4.1.2 与《广东省海洋主体功能区规划》的符合性分析

2017 年 12 月,广东省人民政府正式批复《广东省海洋主体功能区规划》,海洋主体功能区按开发内容可分为产业与城镇建设、农渔业生产、生态环境服务三种功能。依据主体功能,将海洋空间划分为优化开发区域、重点开发区域、限制开发区域和禁止开发区域。

《广东省海洋主体功能区规划》指出:"优先发展以海岸带为主体的沿海经济带,加快横琴、前海、南沙、湛江高栏等重点发展地区的开发与建设。"重点加强海洋自然保护区、人工鱼礁、海洋牧场、海草床等海洋和海岛生态多样性保护与生态环境敏感地区的保护和建设,构建近海海域蓝色生态屏障。同时,以海水养殖区为基础,科学养护渔业等海洋生物资源,保护近岸养殖用海生态环境,科学控制增养殖密度和规模,大力发展深水网箱养殖。"

项目位于通明海海洋自然保护区,本项目为红树林湿地生态修复工程,通过 红树林湿地生态修复,加强了海洋自然保护区海洋生态多样性保护与生态环境敏 感地区的保护和建设。

因此,本项目的建设符合《广东省海洋主体功能区规划》对该区域的发展方向及布局。

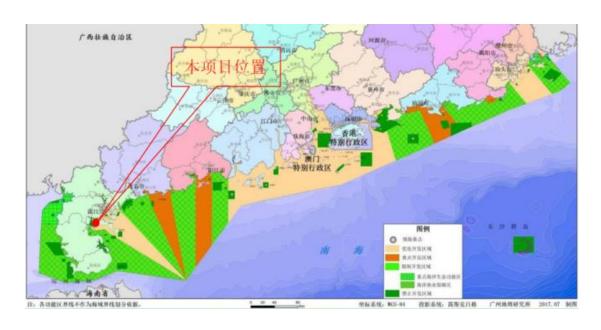


图 10.4.1-1 广东省主体功能区划图

10.4.2 与海洋功能区划的符合性分析

10.4.2.1 与《广东省海洋功能区划(2011-2020年)》的符合性分析

(1) 项目所在海域及周边海域海洋功能区划

根据《广东省海洋功能区划(2011-2020 年)》,本项目所在的海洋功能区为通明海海洋保护区。项目环境影响评价范围(项目建设区域外扩 15km)内涉及的海洋功能区有:湛江港港口航运区、东海岛南部工业与城镇用海区、通明海海洋保护区、雷州湾农渔业区、南渡河口海洋保护区。各功能区的分布详见图 2.3.2-1 及表 10.3.2-1,海洋功能区登记表见表 10.3.2-2。

表 10.3.2-1 项目所在海域及周边海域海洋功能区划分布状况 (广东省)

序号	省海洋功能区划名称	与本项目相对位置
1	湛江港港口航运区	东北侧,约 2.4km
2	东海岛南部工业与城镇用海区	东南侧,约 1.6km
3	通明海海洋保护区	项目占用
4	雷州湾农渔业区	南侧,约 0.93km
5	南渡河口海洋保护区	西南侧,约 10.06km

表 10.3.2-2 项目附近海洋功能区登记表(广东省)

序号	代码	功能区	地	地理范围	地理范围 功能区 (管理要求	
		名称	X	(东经、北纬)	类型	岸段长 度(米)	海域使用管理	海洋环境保护
21	A2-3	湛江港 港口航 运区	湛江市	东至:110°30′08″ 西至:110°18′27″ 南至:21°03′58″ 北至:21°21′01″	港口航运区	9287 61196	 相适宜的海域使用类型为交通运输用海; 保障调顺渔业基地及巡航执法基地等用海需求; 围填海须进行严格论证,优化围填海平面布局,节约集约利用海域资源; 改善水动力条件和泥沙冲淤环境,维护湛江湾防洪纳潮功能,维持航道畅通; 加强用海动态监测和监管; 优先保障军事用海需求。 	1. 加强港区环境污染治理,生产废水、生活污水须达标排海,推进湛江港湾的综合整治; 2. 加强海洋环境监测,建立完善的应急体系; 3. 执行海水水质四类标准、海洋沉积物质量三类标准和海洋生物质量三类标准。
165	B3-1	东海岛 工 城 镇 区	湛江市	东至:110°30′12″ 西至:110°11′57″ 南至;20°55′44″ 北至:21°00′11″	工业与 城镇用 海区	13932	 相适宜的海域使用类型为造地工程用海、工业用海; 保障港口用海需求; 在基本功能未利用前,保留养殖等渔业用海; 围填海须严格论证,优化围填海平面布局,节约集约利用海域资源; 工程建设期间采取有效措施降低对湛江硇洲岛海洋资源自然保护区的影响; 加强对围填海的动态监测和监管; 优先保障军事用海需求,围填海等开发活动需保障军事设施安全。 	1. 保护民安-山北红树林及其生境; 2. 基本功能未利用前,执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准; 3. 工程建设期间及建设完成后,执行海水水质三类标准、海洋沉积物质量二类标准和海洋生物质量二类标准。

序号	代码	功能区名称	地区	地理范围 (东经、 北纬)	功能区类型	面积 (公顷) 岸段长 度(米)	管理要求		
							海域使用管理	海洋环境保护	
20	A6-6	通明海海洋保护区	湛 江 市	东至:110°19′39″ 西至:110°09′34″ 南至:20°57′40″ 北至:21°08′03″	海洋保护区	13888 72572	 相适宜的海域使用类型为特殊用海; 保留湛江国家级红树林保护区通明海片区非核心区内的 围海养殖等渔业用海,限制扩大养殖规模; 严格按照国家关于海洋环境保护以及自然保护区管理的 法律、法规和标准进行管理。 	1. 保护通明海红树林; 2. 严格控制养殖污染和水体富营养化,防止外来物种入侵; 3. 加强保护区海洋生态环境监测; 4. 执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。	
18	A1-4	雷州湾 农渔业 区	湛江市	东至:110°39′09″ 西至:110°07′39″ 南至:20°15′15″ 北至:21°00′59″	农渔业区	116372 148452	1. 相适宜的海域使用类型为渔业用海; 2. 保障南渡河口避风塘、通明渔港、博赊渔港、赤坎仔渔港、人工鱼礁等用海需求; 3. 适当保障港口航运用海需求; 4. 保护南渡河、通明港河口海岸、生物海岸; 5. 严禁在南渡河河口海域围填海,维护海湾防洪纳潮功能; 6. 禁止炸岛等破坏性活动; 7. 合理控制养殖规模和密度。	1. 保护东海岛海草床生态系统; 2. 保护龙虾、石斑鱼、栉江珧等重要渔业品种; 3. 严格控制养殖自身污染和水体富营养化,防止外来物种入侵; 4. 加强渔港环境污染治理,生产废水、生活污水须达标排海; 5. 执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。	
164	B6-4	南渡河 口海洋 保护区	湛江市	东至:110°12′06″ 西至:110°10′59″ 南至:20°51′00″ 北至:20°53′12″	海洋保护区	778	 相适宜的海域使用类型为特殊用海; 适当保留增养殖等渔业用海,严格控制围海养殖,保持潮汐通道; 严格按照国家关于海洋环境保护以及自然保护区管理的法律、法规和标准进行管理。 	 加强红树林保护; 加强保护区海洋生态环境监测; 执行海水水质一类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。 	

(2) 与海洋功能区划的符合性分析

本项目位于广东省湛江市通明海海域,项目所在的海洋功能区为通明海海洋保护区。工程为红树林湿地生态修复系统治理工程,没有完全改变周围海域的自然属性,项目建设不涉及围填海;在项目施工过程中,由于本项目施工区均位于养殖塘内部,闸口处于关闭状态,与外海不连通,悬浮泥沙的影响是暂时和局部的,加之悬浮泥沙具有一定的沉降性能,随着施工作业的结束,塘内悬浮泥沙将慢慢沉降,悬浮泥沙不会对塘外海域水质产生大的影响,能够满足环境保护要求。

项目与海洋功能区管理要求的符合性分析详见表 10.3.2-3。

表 10.3.2-3 项目与广东省海洋功能区划的符合性分析表

项目占 用的功 能区		管理要求	符合性分析	
	用海方式 控制要求	海洋保护区	海洋保护区用海	
	用途管制要求	1. 相适宜的海域使用类型为特殊用海; 2. 保留湛江国家级红树林保护区通明海片区非核心区内的围海养殖等渔业用海,限制扩大养殖规模; 3. 严格按照国家关于海洋环境保护以及自然保护区管理的法律法规和标准进行管理。	1.项目属于红树林湿地生态修复工程,符合 所在功能区所要求的用海类型及用海方式; 2.本项目为红树林营造修复项目,工程区位 于湛江国家级红树林保护区实验区范围,不 涉及核心区,项目施工位于东海岛西岸养殖 塘内,主要采取的措施有退塘还林,不会扩 大养殖规模; 3.项目为红树林湿地生态修复工程,建设严 格按照国家关于海洋环境保护以及自然保 护区管理的法律法规和标准进行管理。	
通明海海洋区	环境保护要求	1. 保护通明海红树林; 2. 严格控制养殖污染和水体富营养化,防止外来物种入侵; 3. 加强保护区海洋生态环境监测; 4. 执行海水水质二类标准、海洋沉积物质量一类标准和海洋生物质量一类标准。	1.本项目位于广东省湛江市通明海海域,是红树林修复项目,有利于上述区域的红树林保护,因此符合相关要求; 2.项目部分位于湛江国家级红树林保护区,项目为生态修复工程,选用当地常见红树树种进行种植,不会导致外来物种入侵,营造修复好的红树林有利于提升周边海域水质和改善周边生态环境,项目采取退塘还林措施,不会扩大养殖规模; 3.项目施工及运营阶段均会委托资质单位进行海洋生态监测; 3.项目属于生态修复项目,施工期产生的废水将进行有效处理,不直排入排海,运营期无污染物排放,修复好的红树林也有利于提升周边海域水质和改善周边生态环境。	符合

本项目评价范围涉及周边海域有湛江港港口航运区、东海岛南部工业与城镇用海区、雷州湾农渔业区、南渡河口海洋保护区。但项目位于围塘范围内,在施工的过程中采用水陆两用挖掘机和绞吸式挖泥船进行施工以及使用运输货船进行苗木运输,施工船舶数量少,施工过程闸口紧闭,围塘与周边海域不发生海水交换,且由于东海岛堵海大堤的阻隔,基本不会影响航运区运行,不会对周围的海洋功能区产生大的影响。项目建设需高度重视海洋生态安全、防洪纳潮问题,防止风险事故发生,以保护相邻功能区的安全。各海洋功能区必须按照《广东省海洋功能区规划(2011-2020 年)》等有关的要求,加强管理,维护海洋功能区的正常运行。

综上可知,项目区全部区域位于《广东省海洋功能区划》中的"通明海海洋保护区",其主导功能为保护海岛周边红树林及其生境。本片区通过红树林种植,修复、改善项目区周边红树林生境,符合功能区划要求。项目的建设不会对周边海洋功能区产生大的负面影响。

10.4.2.2 与近岸海洋功能区划的符合性分析

为了保护和改善广东省海洋生态环境,防止海洋环境污染,保证沿海地区经济发展战略的实施和社会、经济、环境协调发展及海洋资源的永续利用,广东省1999年制订了《广东省近岸海域环境功能区划》,该功能区划主要适用于广东省管辖的近岸海域。

根据《广东省近岸海域环境功能区划》,本项目位于二类功能区。该功能区的主导功能为: 航道、渔港和渔业设施基地建设、养殖、增殖、潮流能、其他工程用海; 水质目标为II类。

根据《湛江市环境保护规划(2006-2020)》中,本项目所在海域属于通明海海洋保护区,该功能区的主导功能为红树林保护、增殖;功能区类别为二类,水质保护目标为第二类海水水质标准。

本项目建设的生活污水及施工废水均不排入海洋,仅施工期有短暂的施工 悬浮物入海污染,运营期间没有污染物排放,不会对该海域水质、沉积物环境产 生不良影响;与该功能区的保护目标是相符的。综上所述,本项目施工悬浮物扩 散范围小,对周围的近岸海域环境功能区影响不大,符合项目所在地近岸海域功 能区划的要求。 因此,本项目的建设符合《广东省近岸海域环境功能区划》《湛江市环境保护规划(2006-2020)》的环境管理要求。

10.4.3 与《广东省海岛保护规划(2011-2020 年)》的符合性分析

《广东省海岛保护规划》提出海岛分类保护,对于有居民海岛生态保护的对象主要包括保护海岛沙滩、植被、淡水、珍稀动植物及其栖息地、特殊用途区域,优化开发利用方式,改善海岛人居环境。鼓励海岛淡水储存、海水淡化和岛外淡水引入工程设施的建设;实施防灾减灾工程,抵御台风、风暴潮和地质灾害等自然灾害侵袭;优先采用风能、太阳能、海洋能等可再生能源和雨水集蓄、海水淡化、污水再生利用等技术。兼顾经济建设和海岛居民生产、生活,引导海岛居民配合特殊用途区域的保护和管理工作。

本项目所在海岛分区为湛江湾区,湛江湾区海岛保护的主要方向是生态保护, 发展港口与临港工业、旅游、海洋渔业。规划重点保护通明海、鸡笼山、特呈岛 等海岛周边的红树林生态系统,维护红树林湿地生态服务功能,适度发展红树林 生态旅游。保护硇洲岛海石滩、硇洲灯塔等自然遗迹或历史遗迹。加强保护硇洲 岛周边海域生态系统,维持海洋生物多样性。合理利用东海岛深水岸线,建设东 海岛、东头山岛临港重化工业基地、完善、延伸产业链、加快推进湛江钢铁、中 科炼化一体化等重点项目建设, 打造东海岛循环经济示范区。 大力发展海水综合 利用业,实施海水直接利用、海水淡化等示范工程,支持东海岛等海岛建设海水 淡化工厂,引导临港重化工业使用海水作为工业冷却水;增加东海岛水库蓄水能 力,加快建设岛外引水工程,解决湛江湾区海岛开发的淡水供需平衡问题。挖掘 地方民俗特色和海洋文化内涵,依托海岛自然景观、历史遗迹,以文化、生态、 休闲为主题,以东海岛为中心,组合开发东海岛、硇洲岛、南三岛、特呈岛、鲎 沙等海岛旅游资源,推进以湛江湾为中心的"五岛一湾"滨海度假休闲区,形成多 岛错位发展的湛江湾海岛综合旅游组团。大力发展水产品精深加工、深水网箱养 殖,建设水产品精深加工园区,培育一批具有国际竞争力的名牌水产品。合理控 制海岛周边网箱养殖、鱼塭养殖,降低近岸养殖密度,拓展远洋捕捞。

本项目位于海岛保护规划的湛江湾区东海岛,项目属于红树林湿地生态修复工程,通过退塘还林、种养耦合的方式进行红树林生态修复,项目红树林营造修

复 683.37 公顷,有助于维护红树林生态服务功能,同时推进海岛生态旅游发展, 合理控制周边养殖发展,符合项目所在湛江湾区的发展要求。

10.4.4 与《广东省养殖水域滩涂规划(2021-2030 年)》的符合性分析

2021 年 12 月 23 日,广东省农业农村厅关于印发《广东省养殖水域滩涂规划(2021-2030 年)》,规划总体目标:促进渔业可持续发展,维护养殖水域滩涂空间,强化养殖与其他生产建设活动的空间协调,为科学开发和合理利用水域滩涂、保护区域生态环境、维护养殖者的合法权益、加强渔业行业规范化管理提供制度化保障,同时为全省构建现代渔业产业体系、建设海洋强省提供科学依据和行动指导。规划范围为广东全部水域滩涂及邻近海域。陆域范围包括河流、湖泊、水库、坑塘、滩涂等,面积约为 1.13 万平方公里。海域范围为广东省内水和领海及东沙群岛附近海域,面积约为 6.47 万平方公里。根据农业农村部《养殖水域滩涂规划编制工作规范》要求,结合广东省水域滩涂资源、区域经济社会发展战略,将全省水域滩涂划分为三类:禁止养殖区、限制养殖区、养殖区等三类一级区。

其中限制养殖区:未来规划新增的生态红线保护区域、饮用水水源二级保护区、水产种质资源保护区实验区、新增的红树林宜林地区域等自动划入限养区。管制措施:1.严格控制养殖规模;2.实施严格的环境准入制度,限养区内养殖活动应严格落实污染防治措施,禁止将不符合水质标准的水源用于水产养殖;3.限制养殖方式和品种;4.控制污染物排放,限养区内的水产养殖污染物排放应符合国家和省规定的污染物排放标准,排放超标的应限期整改;整改后仍不达标的,由地方政府及相关部门依法责令限期搬迁或关停。

本项目为红树林湿地生态修复工程,本项目部分位于广东湛江红树林国家级自然保护区实验区范围内,属于限制养殖区,本项目运营期打捞海漂垃圾;而施工期间所产生的废水将进行有效处理,不排海,本项目对水质、沉积物的影响是暂时且很小的,可维持现状环境质量,对该区域的水质环境产生影响很小,项目建成后对渔业水域的生态环境基本无影响。

因此,本项目符合《广东省养殖水域滩涂规划(2021-2030年)》要求。

10.4.5 与《湛江市养殖水域滩涂规划(2018-2030 年)》的符合性分析

2019 年 4 月 20 日,湛江市人民政府办公室关于印发《广东省养殖水域滩 涂规划(2021-2030 年)》,规划总体目标:通过对湛江市养殖水域自然条件、 利用现状和水产养殖产业发展进行分析,综合评价水域滩涂承载力,预测水产养 殖前景,形成养殖水域滩涂开发总体思路。按照农业部《养殖水域滩涂规划编制 工作规范》要求,科学划定禁止养殖区、限制养殖区和养殖区,明确管制措施和 保障措施,为促进全市水产养殖业全面、协调、可持续发展提供科学依据。

本项目为红树林湿地生态修复工程,根据《湛江市养殖水域滩涂规划(2018-2030年)》,本项目湛江养殖水域滩涂规划叠图详见图 10.4.5-1、本项目与湛江养殖水域滩涂(功能区)规划叠图详见图 10.4.5-2。由图可知,本项目位于工程位于禁养区、限养区,禁养区内的工程为保护区修复工程,该部分区域为广东湛江红树林国家级自然保护区禁养区。本项目工程基本上位于通明海海洋保护区限制类红线区(限养区)。项目采取退塘还林,种养耦合模式。

本项目运营期打捞海漂垃圾,清理海域;而施工期间所产生的废水将进行有效处理,不排海,本项目对水质、沉积物的影响是暂时且很小的,可维持现状环境质量,对该区域的水质环境产生影响很小,项目建成后对渔业水域的生态环境基本无影响。

因此,本项目符合《湛江市养殖水域滩涂规划(2018-2030年)》要求。

图2 湛江市养殖水域滩涂(禁养、限养、养殖)规划图

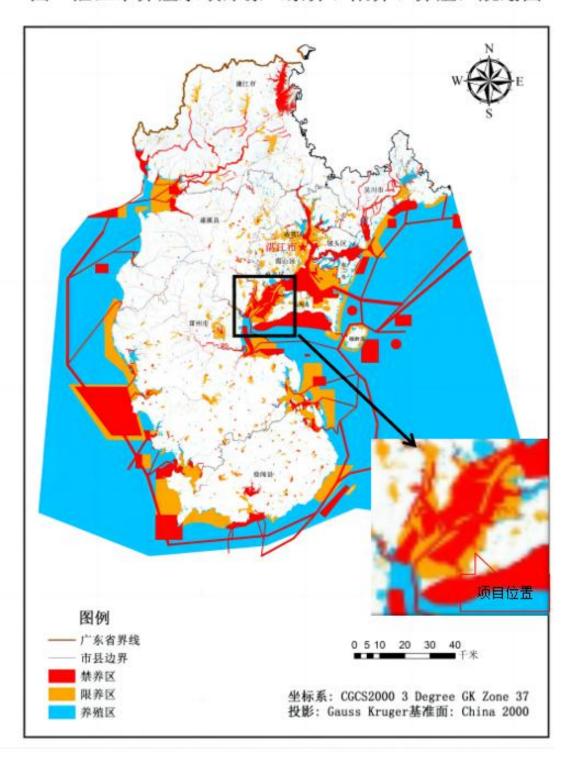


图 10.4.5-1 本项目与湛江养殖水域滩涂规划叠图

图3 湛江市养殖水域滩涂(功能区)规划图

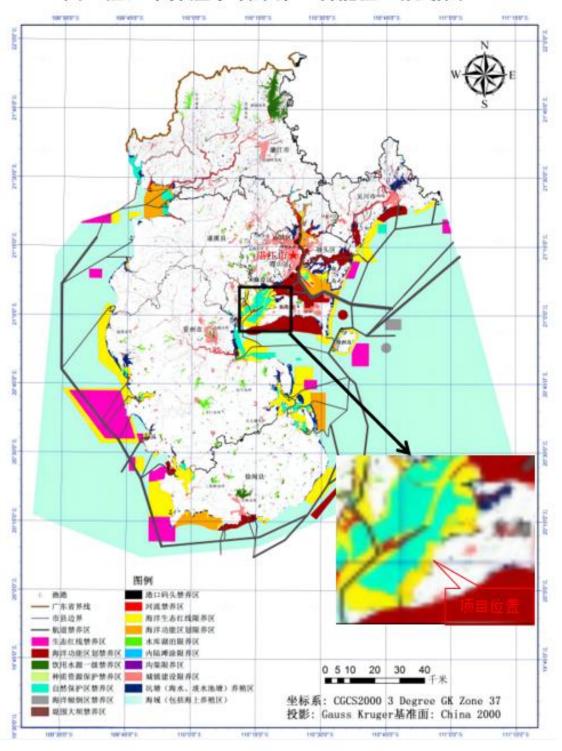


图 10.4.5-2 本项目与湛江养殖水域滩涂(功能区)规划叠图

11 环境经济损益分析

环境影响经济损益分析是针对项目的性质和当地的具体情况,确定环境影响因子,从而对项目环境影响范围内的环境影响总体作出经济评价。分析建设项目的社会、经济和环境损益,评价建设项目环境保护投资的合理性以及环境保护投资的效益,促进项目建设的社会、经济和环境效益的协调统一和可持续发展。

本项目东海岛位于养殖塘区域,整个片区保护区总面积 3044.9 公顷,由于自然因素和人为活动影响,区域内红树林湿地受损严重,鸟类觅食地丧失,造成滨海湿地资源退化,湿地功能减弱。项目建设对现有红树林实施全面保护,逐步完成自然保护区内的养殖塘等开发性、生产性建设活动的清退,恢复红树林自然保护地生态功能。项目的实施将能体现显著的生态效益、经济效益和社会效益。

11.1 环境保护设施和措施投资估算

本报告拟采取的清洁生产和污染防治措施主要针对会对海洋环境造成影响的水污染和固体废物污染,并提出了生态保护措施,比较清楚、具体,可以有效执行,能够达到环境保护的要求。

根据当前的市场经济价格估算,本次评价所提出的各项污染防治措施费用约为 520.2 万元,项目总投资约 58060.28 万元,占总投资的 0.90%,详见表 11.1-1。

项目	环保设施名称	投资估算(万元)
	环境跟踪监测	25
	机械残、次油交由有资质单位处理、含油废	12
光	水委托处理	
施工期	施工期溢油应急设施、设备	19
	油气管线附近安全警示标志等	4
	固废处理	25
	红树林标志牌等	6
营运期	固废清理(对塑料袋、泡沫等海洋垃圾和浒	25
	苔少量进行人工清除)	

表 11.1-1 工程环保设施投资估算表

	运营期监测	25
	生态损失补偿	379.2
合计		520.2

11.2 生态效益分析

- (1) 红树林生态系统具有固碳释氧、净化空气等效益。参照在湛江开发的全国首个蓝碳交易项目,每公顷红树林固定 10.5t CO_2 计算,本项目每年可固定 CO_2 的量: CO_2 量=单位面积固定 CO_2 量×种植面积=10.5t/公顷×683.37 公顷 \approx 7175t CO_2 ,固碳效益明显,对于本区域"双碳"目标早日实现具有重要意义。通过光合作用,每吨 CO_2 释放的氧气约为 0.73t,则红树植物群落年均释氧量= $7175 \times 0.73 \approx 5238t$ 。
- (2) 红树林修复具有吸收污染物的作用。按照每公顷红树林年吸收总氮、总磷分别为 150t 和 1.02t 计算,本项目红树林修复每年可吸收总氮、总磷量分别为:总氮量=单位面积吸收总氮量×种植面积=150t/公顷×683.37 公顷≈102506t,总磷量=单位面积吸收总磷量×种植面积=1.02t/公顷×683.37 公顷≈697t 。红树林对净化海水、预防赤潮发生,具有十分重要的意义。因此,本项目的实施有利于改善海水水质状况,维持健康的养殖环境,从而达到整治和修复海湾生态系统的目的。
- (3) 红树林恢复可有效抵御风浪,提高海岸的灾害防护能力,降低灾害发生频率和灾害损害度,保护沿海农田和养殖塘,促进沿海地区的可持续发展。红树植物具有发达的根系,纵横交错的支柱根、呼吸根、板状根、气生根、表面根,形成一个稳固的网络支持系统,一方面使植物体牢牢地扎根于滩涂上,并且盘根错节地形成严密的栅栏,增加了海滩面的摩擦力,能阻挡水流,减弱流速,从而起到防风消浪的作用;另一方面网罗碎屑,加速了潮水和陆地径流带来的泥砂和悬浮物在林区的沉积,促进土壤的形成,起到促淤造陆的作用。
- (4) 红树林具有生物多样性高、生产力高、归还率高、分解速度快等特点,可以为许多海洋生物提供重要的食物来源,提高生物多样性和养殖产量。同时,红树林生境也为鸟类提供栖息和觅食的场所,为潮间带生物提供了躲避的海、繁殖和生长的良好场所。

11.3 经济效益分析

(1) 红树林产品价值

① 白骨壤果实价值

根据在项目区白骨壤果实产量调查结果,白骨壤果实每年亩产约 489kg,在经过深度加工形成罐头和冷冻速食后,预计的市场价可以达到 40 元/kg。本项目种植红树林面积 683.37hm²,其中拟种植白骨壤约占 50%,本项目实施后,预计将产生直接经济效益达 10025 万元。

② 红树林桐花树蜜价值

桐花树的蜜、粉丰富,中蜂和意峰均喜爱采集,可出产商品蜂蜜,是湛江市重要特色蜜源植物。根据《蜜蜂授粉技术规程(试行)》:1个15框蜂的蜜蜂强群可承担连片分布的授粉作物面积,桐花树每公顷最少可承载10框群势的蜜蜂4.5群。项目区种植红树林面积为683.37hm²,其中桐花树品种占种植红树林面积的10%,项目中资源载蜂量和蜂蜜产值估算如下。

资源载蜂量=开花的桐花树面积×单位面积载蜂量=(683.37hm²×10%×100%)×4.5 群/hm²=308(群);

蜂蜜产值=资源载蜂量×群均产蜜量×蜂蜜批发价=308 群×15kg/群×100元/kg=46.1 万元。

(2) 碳汇价值

参照全国首例蓝碳交易项目的成交价格——每吨 CO₂ 的 66 元人民币来计算,本项目营造的红树林生态系统每年在碳交易方面就可以创造约 46.67 万元的经济价值。

(3) 水产品价值

海洋生态保护可增加近海渔业资源量,进而增加渔民的就业机会和收入。生态修复成果不仅限于狭小的工程实施区域,良好的海洋生态对周边区域的强大生态辐射效应,对于维持、恢复和丰富更为广大区域的渔业资源有着重大作用。对周边村养殖情况及收益统计分析,在不涉及人工成本下,养虾池塘产值至少在1000元/亩,鱼虾混养池产值至少为770元/亩,虾蚝混养池每亩产值至少为3000元。不同养殖模式以及管理模式,对产值有较大的影响。现状管理模式上多以人工投饵为主,成本较高。种植红树植物会增加塘内凋落物,可减少人工投

饵成本,增加经济效益,可以产生直接的水产品经济效益。

(4) 生态旅游价值

适当的生态旅游开发能够大幅提升项目地的社会经济价值,保障试点项目的 长效运营与推广。利用红树林、湿地两大天然生态资源优势,建设滨海红树林湿 地公园,打造国家级景区,推动滨海湿地观光旅游业的发展。利用生态旅游产业 发展促进当地及其附近地区人员的充分就业和景区配套服务产业的繁荣,联动周 边旅游景点,打造多个精品旅游路线和区域旅游品牌,建设科普教育基地,增强 游客的生态体验,同时吸纳周边居民就业,带动当地酒店、餐饮和零售业等服务 业的快速发展,实现生态效益、经济效益和社会效益的有机统一。

通过本项目的落实,使红树林湿地的生态保护与适度开发相结合,发挥生态 旅游的优势,发展生态文明,促进区域经济可持续发展,具有巨大的生态旅游市 场开发价值。

11.4 社会效益分析

项目范围内海滩由于自然因素和人为活动影响,区域内红树林湿地受损严重, 鸟类觅食地丧失,造成滨海湿地资源退化,湿地功能减弱,制约海湾整体环境改善。本项目主要任务为:本项目为生态修复工程,主要包括东海岛西岸红树林修 复工程。

- (1)通过周边社区村民参与实施生态修复工程,结合环境教育宣传,提高公众的环境保护意识;修复工程确保项目区沿岸社区的生态安全,带动临近沿海地区及部分内陆地区经济的健康持续发展,增加就业岗位和居民经济收入,改善海岸和近岸海域的投资环境,维护了人民的长远生计,提高公众对政府公共服务的满意度,促进人与自然的和谐发展。
- (2)项目实施将提高当地海洋生态环境,形成更为悦目的景观效果,不仅切实提高当地人民群众的生活质量,而且为慕名而来的旅游者提供了休闲娱乐的好去处,提高人民精神生活质量。行动的实施还将促使公众参与近岸海洋生态环境保护与可持续利用,同时满足公众对环境的需求和社会经济可持续发展的要求,最终实现人与自然的和谐相处。
 - (3)项目实施可以提高保护区在科学研究和教学基地、国际交流载体等角

色方面的地位。红树林区作为海岸带生态修复的特种造林技术实践和展示平台, 不仅有助于提高保护区的保护和管理水平,而且加重了保护区在国际合作中的技术含量。

11.5 环境影响效益分析

11.5.1 工程对环境影响的分析

1、环境空气

施工期间对大气环境的影响主要表现为施工船舶、机械废气,施工船舶、 机械废气产生量少,且施工场所为开阔地带,影响很小,工程结束后就会消失。

2、声环境

项目施工期间通过设备选型、减振、加强保养等措施降低噪声的产生,且施工场所为开阔地带,200m内无声环境敏感点,产生的施工噪声对周边环境影响不大。

3、水环境

项目施工过程中产生的废水主要来自施工人员的生活污水、船舶含油污水以及施工过程取土、滩涂垫高的悬浮物。

施工含油污水严格按照《船舶水污染物排放控制标准)(GB3552-2018)的 要求,禁止直接向沿海海域排放油类污染物,经收集上岸后应交由有资质的单位 处理。施工期施工人员生活污水经移动厕所收集后运至民安街道污水处理厂处理。

本项目采取潮沟开挖回填塘内垫高施工,营造红树林生境并种植红树林修复项目所在区域生态环境,项目施工工艺可以有效控制项目施工对水体的影响程度和范围。施工取土工程对水底淤泥的搅动形成的悬浮物很快可以沉降,且影响范围有限,对海洋环境影响较小。

4、固体废物

施工期产生的固体废物主要为施工人员的生活垃圾、残油废油、不合格苗木,施工人员生活垃圾和废弃容器薄膜袋统一收集交由环卫部门处理,不得将垃圾随意丢置;施工船舶作业产生的残油、废油等危险废物,统一交由有危险废物处理资质的单位将其安全处置。不合格苗木统一收集交由有能力单位处置。

5、生态环境

施工期不对陆域生态环境产生影响,项目施工范围主要集中在东海岛西岸养殖塘内,属于通明海海域。

①悬浮物增加对海洋生物的影响

本工程施工过程中,悬浮物主要来自养殖塘填土、挖穴、种植建设等对环境影响较大的施工环节。本项目施工期造成评价水域悬浮物的增加对该地区水生生物的负面影响虽然是不可避免的,但该影响在采取合理的环保措施的前提下可以局限在较小的范围内,而且随着施工期的结束,对海洋生物的不利影响也将得到逐步缓解。

②底质破坏对底栖生物、潮间带生物的影响

在工程建设中,由于养殖塘填土、挖穴、种植建设等施工作业,改变了生物的原有栖息环境,尤其对底栖生物和潮间带生物的影响是最大的。停止施工后,施工区及其附近水域的底质将恢复平静,随后就是底栖群落的重新建立以及浮游生物的恢复。

施工过程中,海洋底质环境被破坏,造成了海洋生物群落尤其是底栖群落发生相应变化,一些不能适应这种环境的种类和数量将逐渐减少。但是这种情况是暂时的,当施工结束后,新的生物群落将逐步建立,海洋生态环境将会逐渐得到缓慢地恢复。

③对生物多样性的影响

本工程实施后是对现有红树林的延续和补充,将有利于项目所在区域生态 资源的保护,为迁徙鸟类和海洋生物提供更大范围的栖息地,使该海域的生物多 样性有所增加。

④施工过程对鸟类的影响评价

根据鸟类调查,鸟类活动区域主要在红树林、滩涂和外围区鱼塘等,本项目施工期间,施工噪声及夜间光照对鸟类活动有轻微影响。但本项目施工结束后,项目建有大面积的人工生态红树林,可为鸟类的生存和发展创造了一个良好的环境。

因此,本项目施工噪声对鸟类的影响将是阶段性的,随施工结束可逐渐恢复, 本项目的建设不会对区域的鸟类产生明显的影响。

综上,本项目拟采取的施工工艺和环保措施均为技术上较成熟的工艺和措施;

报告提出的工程设计和管理中各类的措施,简单成熟,可操作性较强;有关施工期大气污染防治和噪声防治及管理的措施,均是按照当地环境管理要求和项目特点提出的;湛江已有多家具有残油、废油危废收集、处置资质单位,本工程施工机械污染物可与这些资质单位签定协议,实行有偿服务。从环境保护技术方面降低项目工程对环境的影响。

11.5.2 项目对环境影响的风险评价

强台风导致的海域超高潮位、风暴正面袭击使得围挡崩塌,进而导致滩涂整 地物料或生态修复物料在海洋中扩散,这会影响到工程周边海区的水质环境及生 态环境。

极端大雨天气可能导致物料受雨水冲刷携带入海,对海洋生态环境产生影响。

本工程应按本报告提出的要求积极采取相应的防护措施,制定相应的安全 管理条例,加强对施工人员的管理和教育等,避免此类风险的发生。

11.6 环境影响经济损益分析结论

2020 年 6 月,国家发改委、自然资源部印发了《全国重要生态系统保护和修复重大工程总体规划(2021-2035 年)》,部署了海岸带生态系统保护与修复工程在内的九大工程。广东省作为海洋大省,强化生态用海,将协同配合、率先垂范,积极推进海洋生态文明建设,牢固树立基于生态系统的海洋综合管理思维,科学引导海洋经济、海洋产业发展,认真做好海湾、岸线的整治修复工作,为广东省经济社会发展和海洋强国建设作出新的贡献。

滩涂资源气候适宜,水分充足,地势平坦,宜于种植大规模的红树林,但滩涂高度对红树林的生长也有一定的影响,红树植物能耐受一定程度的周期性海水浸淹,但是低于宜林临界线,超出其生理限度势必导致植株死亡、造林失败。通明海海域进行红树林种植,就必须先进行滩涂改造,形成适合红树林生长的滩涂高度。

从社会、经济角度看,红树林本身就是良好的经济林。大多数种类的红树植物树皮含有丰富的丹宁,可用作染料和提炼栲胶;木材纹理细微,颜色鲜艳美观,抗虫蛀,易加工,可供为建材、柱材、家具用材及薪炭材;红树四季开花,果实

丰硕,果实富含淀粉,是酿造啤酒的重要原料;红树林内的海鲜比海滩的更肥美,而且无污染,故在红树林下进行合理的海产养殖具有很高的经济效益;同时如果能充分利用红树林的枯枝落叶作为食物来源还可以节省饲养成本。

与其他生态系统相比,红树林湿地生态系统中的动植物种类更加丰富,水生生物的物种多样性远远高于其他海岸带水域生态系统。红树林内部产生的凋落物不仅为近海海洋动物提供了丰富的饵食,而且经微生物分解后又变成红树林植物的营养物质,促进红树林群落的良性发展;再加上河口、海湾近岸富含营养的水体,为大量的藻类、无脊椎海洋动物和鱼类等提供了理想的生境。

红树林是海洋鸟类最理想的天然栖息地,凡红树林分布的区域,均保持了较高的鸟类种群和其他生物物种的多样性。尤其对于候鸟,红树林广阔的滩涂和丰富的底栖动物为迁徙鸟类提供了落脚歇息、觅食、恢复体力的一切优厚条件。

红树林湿地在净化水源、保护环境中的作用非常大。红树吸收重金属离子后,体内大量的丹宁分子能与其发生化学反应,使其失去毒性。红树通过吸附沉降、植物的吸收等作用降解和转化污染物从而使水体质量得到改善;而树下的多种微生物能分解林内污水中的有机物和吸收有毒的重金属,释放出来的营养物质可供给红树林生态系统内的各种生物,从而起到净化环境的作用。

红树林湿地是重要的旅游资源,红树林的旅游功能有助于把红树林湿地内从 事水产养殖业、加工业、林业等人员转化安置为保护和管理湿地的工作人员,减 轻人类对红树林湿地的开发、利用、污染、破坏的压力。

通过本项目的生态化工程的建设,为人们提供游憩的场所,使红树林湿地的生态保护与适度开发相结合,发挥生态旅游的优势,发展生态文明,促进区域经济可持续发展。有利于提高社区群众的生态环境保护觉悟和意识,使社区群众自发地进行环境保护。红树林生态环境系统修复,提高海洋生物资源和鸟类资源,改善人文环境,为周围百姓提供一个良好的生产生活环境,极大地提高当地百姓的生活品质,同时带动当地生态农业、旅游业,餐饮业、房地产等产业的发展,促进当地人民的生产生活方式由单一传统水产养殖向生态效益型养殖、体验式休闲旅游、相关服务业等多元化发展。

从生态环境损失角度来看,本项目的施工会给项目所在海域环境带来一定 的影响,并由此还会带来一定的经济损失,如工程施工过程会增加海水中悬浮物 含量,导致海水透明度和光照强度的下降,对浮游生物、游泳生物会造成一定程度的影响,且会掩埋底栖生物的栖息环境,造成底栖生物的损失。但是这个损失是本项目在施工期的短暂影响,而且施工完成后,新的红树林生态系统形成,逐步使周边的水质状况将得到改善,浮游生物、底栖生物、游泳生物和哺乳生物以及鸟类等栖息在红树林中的生物会恢复,并建立更为复杂、完整和稳定的生态结构。项目实施后,养殖废水的随意排放将得到控制,养殖效益将更大化,当地居民的经济将进一步得到改善。同时,项目施工建设与运营的过程中,建设单位也将采取一定的环境保护措施,将环境影响控制在最小范围和最低程度,并且这些污染防治办法与环境保护措施在经济上是合理的、可行的。

综合分析项目建设的经济损益,项目建设带来的环境资源的损失及负面影响有限,并在可接受范围内。项目建设带来的生态效益、社会效应和经济收益是 比较明显的。因此,该项目是可行的。

12 环境管理

12.1 环境管理机构及职责

本工程环境管理由建设单位负责,建设单位业务上接受当地环保部门的指导和监督。环保管理机构承担以下环境管理职责:

- (1) 贯彻、执行国家、省、市有关环境保护方面的法律、规范、标准及其 他要求;
 - (2) 组织制定企业环境保护规划和计划;
 - (3) 负责制定和建立本企业环保制度与规章:
 - (4) 制定企业环境保护管理目标和指标;
 - (5) 负责企业的环境统计、环境保护档案的建立与管理;
 - (6) 负责实施与监督企业环境管理;
 - (7) 负责监督企业各项环保设施的正常运行、维修;
 - (8) 负责对企业各级领导干部和员工的环境教育与培训。

12.2 环境管理计划

- (1) 初步设计和施工前期环境管理
- ①污染防治方案的审核

配合技术部门采取专家论证、公众参与等方式,对项目的工艺设计的可行性、环保措施的可行性进行论证。

②签订施工承包合同中应包括环境保护的专项条款

在施工招标发包时,应对施工单位的文明施工素质及施工期环境管理水平进行审核,在与中标单位签订施工委托合同时,应将施工期承包单位必须遵循的环境保护有关要求以专项条款方法写入合同文本中,并在施工过程中据此加强监督、检查、减少施工期对环境的污染影响。

(2) 施工期环境管理

施工期的环境管理主要由施工单位具体实施,其在环境管理、污染控制及防治措施实施等方面将起到关键作用,因此,选择正规、有经验的施工单位,并将

施工期的环境管理工作纳入合同内容中是确保环境管理计划实施的前提。

除此之外,委托有资质的监理单位进行施工期的环境监理,环境监理是实现项目的全过程环境管理的手段。

施工期环境管理的具体要求如下:

- ①施工单位和监理单位施工之前对相关人员开展环境保护的宣传和教育培训工作;
- ②施工单位需严格落实环评报告提出的环保措施,监理单位应做好施工现场的巡视检查、发现存在的环境问题并及时提出,对环保措施的落实情况进行监督。该工程施工期拟落实的主要污染防治措施包括:
- A.人工围挡滩涂垫高作业是否采取降低悬浮物的浓度和控制悬浮物扩散的措施;
 - B.施工物料、种苗堆放、装卸、运输是否按对策措施要求落实;
 - C.施工过程中使用的各类机械设备是否依据有关法规控制噪声污染:
 - D.施工粉尘、噪声是否得到有效防治;
 - E.施丁期各类废水和垃圾是否进行妥善处置:
 - F.落实施工期环境监理制度是否落实:
 - G.施工期监测制度是否落实等。
- ③监理单位编制环境监理报告(环境监理月报、季度报告及监理总结报告),报送建设单位、施工单位和环境保护行政主管部门,反映施工期环境保护措施的落实情况,这既是施工期环境管理的重要成果,又是工程竣工环境保护验收的重要材料。
 - (3) 验收阶段环境管理
- ①落实环保投资,确保治理措施执行"三同时"和各项环保治理措施达到设计要求:
- ②组织开展该工程环保设施的竣工验收手续,开展竣工验收监测、编制环保竣工验收报告等工作。
 - (4) 营运期环境管理
 - ①监督环保设施的正常运行
 - 工程建设单位应监督各项环保设施的正常运营,杜绝违法向环境排放污染物,

对于事故情况下的污染物超标排放,采取及时有效的措施加以控制,同时上报生态环境主管部门。

②监督生态影响防治措施和生态影响补偿措施

监督该工程生态影响防治措施和生态影响补偿措施的落实,包括措施的落实及落实后的跟踪监测等内容,是该工程环境管理最重要内容之一。

③制订和实施环境监测计划

组织环境监测计划的制订,并做好日常的监测记录工作和定期监测上报工作,通过污染物排放的环境监测来检测环保设施的运行效果,将环保工作落到实处。

④污染事故应急防范

对于突发性污染事故的应急防范,建设单位应成立应急反应指挥小组,制定和实施项目应急反应计划,配备适当数量的应急设备,将本工程的突发事故应急防范工作与地方的突发事故应急防范工作相衔接,充分利用区域的应急资源,做好污染事故应急防范工作。

⑤宣传、教育和培训

对职工进行环境保护方面的宣传和教育,培养大家爱护环境、防止污染的意识。对于环保设施管理与维护人员,定期参加上级主管机构和各级生态环境主管部门组织的职业技术培训,提高其环境管理和技术水平。

12.3 环境监理计划

12.3.1 环境监理的内容

环境监理包括工程设计文件环保核查和施工期环境监理。

- (1)设计文件环保核查是对建设项目的设计文件符合环境影响评价及其批准文件要求情况的检查。
- (2)施工期环境监理包括生态保护措施监理、环境保护达标监理、环保设施监理:生态保护措施监理是对项目施工建设过程中生态保护、恢复与优化等相关工程和措施落实情况的技术性监督检查;环境保护达标监理是对项目施工建设过程中各种污染物排放达到环境保护标准要求情况的技术性监督检查;环保设施监理是对建设项目环境污染治理设施、环境风险防范设施按照环境影响评价文件及批复的要求建设情况的技术性监督检查。

12.3.2 环境监理的实施

实施环境监理前,建设单位应与环境监理机构签订书面监理合同。合同中应包括设计文件环保核查,施工期环境监理内容的条款;应明确建设单位和环境监理机构的环境保护责任和目标任务,并作为环境保护行政主管部门考核、验收等管理工作的内容。在申请建设项目竣工环境保护验收时,建设单位应提交建设项目环境监理报告。

12.3.3 环境监理的程序

- (1) 根据所承担的环境监理工作,按照环境影响评价文件及环境保护行政 主管部门批复的要求编制环境监理方案;
- (2) 依据项目建设进度和工程特点编制阶段性或单项措施环境监理实施细则;
- (3) 在项目开工建设前完成设计文件环保核查并及时向项目建设单位提交设计文件环保核查报告;
- (4)向项目现场派驻环境监理项目部和监理人员,采取巡视、检查、旁站等进行跟踪管理。环境监理项目部的设置、组织形式和人员组成,应当根据环境监理工作的内容、服务期限及工程类别、规模、技术复杂程度、工程环境等因素确定;
- (5)参加项目施工例会、项目验收会和组织项目环境监理例会,对环保工程进度、环境质量进行控制,提出工程暂停、复工和设计变更等要求或决定;
- (6) 按照监理实施细则实施监理,填写日志,定期向项目建设单位提交监理月报表和专题报告,并同时报送环境保护行政主管部门和当地环境保护行政主管部门;
- (7) 在生态修复项目开工、竣工环境保护验收前分别向项目建设单位提交 阶段环境监理报告。在建设项目通过竣工环境保护验收后移交环境监理档案资料。

12.3.4 监理人员的义务

环境监理人员发现项目施工中存在如下问题时,应及时报告建设单位和环境行政主管部门:

(1) 项目设计平面布置、建设规模、红树林种植和环境保护设施与所批复

的环境影响评价文件存在较大变更的:

- (2)项目施工过程中存在超出国家或地方环境标准排放污染物的环境违法 行为;
- (3)项目施工过程中存在生态环境破坏,或未按照环境影响评价及批复要求实施生态恢复的:
- (4) 环境污染治理设施、环境风险防范设施未按照环境影响评价文件批复的要求建设的;
- (5) 环境污染治理设施、环境风险防范设施施工进度与主体工程施工进度 不符合建设项目环境保护"三同时"要求的;
 - (6) 项目施工过程中存在其他环境违法行为的。

12.3.5 本项目环境监理工作

- (1) 环境监理主要内容:本工程环境监理主要包括设计文件环保核查、环保达标监理、环保设施监理、生态保护措施监理和环保"三同时"监理。
 - (2) 环境监理时间及频率: 施工期全程环境监理工作。
- (3) 环境监理机构:建设单位在项目开工建设前委托有监理能力的单位开展本工程环境监理工作。
 - (4) 环境监理要点: 本工程环境监理要点详见表 12.2.5-1。
- (5)环境监理成果:本工程环境监理成果主要包括日常工作记录、环境监理季度报告、最终监理报告等文字记录材料、监测资料及现场照片等,主要记录建设项目施工过程中对环境产生影响时,施工单位所采取的防治措施及其效果;施工过程中存在的违反环境保护相关法律法规及政策的行为;参与环境调查与环境纠纷处理的情况;以及环境监理报告情况等。环境监理单位在本工程开工和竣工环境保护验收前分别向建设单位提交阶段环境监理报告,并同时报备负责项目审批的环境行政主管部门;在项目通过竣工环境保护验收后移交环境监理档案资料。

表 12.2.5-1 本工程环境监理要点

分类	环境监理要点	
	(1) 施工场地各类废水按照环评要求达标处理	
	(2) 检查生活垃圾和施工固废的日常收集分类储存和处理工作,是	
环保达标监理	否 按规定由工程承包商妥善处理处置	
外体及你鱼生	(3)检查施工抑尘措施是否到位,TSP 达标排放	
	(4)各类机械设备是否采取隔声减噪措施,施工期噪声是否满足《建	
	筑施工场界环境噪声排放标准》(GB12523-2011)	
	(5) 施工现场是否设置固废分类回收装置	
环保设施监理	(6) 生活污水、施工废水及船舶污水采取环评报告书提出的处理	
	施	
	(7) 施工场地是否控制批准的区域范围内,在施工区域是否设立临	
生态保护措施监理	时标志牌	
土心体护拍飑监理	(8) 就工程建设造成的海洋生物损失,是否采取报告书提出的生态	
	补偿措施	
TT /0 (4 ->	(9) 环保设施是否按环评及其批复文件的要求与项目同时设计、施	
环保"三同时"监理	工与运营	

落实环境监理计划,环境监理报告作为项目竣工环境保护验收报告的附件 资料。

12.4 环境监测计划

环境监测作为环境监督管理的主要实施手段,可以通过其及时掌握施工期和 工程后周围环境变化情况,从而反馈给项目决策部门,为本项目的环境管理 提供科学依据。根据本项目特点,本次评价环境监测主要为施工期环境监测。根 据《建设项目海洋环境影响跟踪监测技术规程》,制订整体环境监测计划。

项目的环境监测计划包括:工程施工期监测计划。具体的监测可委托有资质的环境监测单位作为执行单位;生态环境监测可由当地海洋、生态环境行政主管以及保护区管理机构进行监督指导。

监测资料建档及报告提交:

- ①对原始记录应完整保留备查。
- ②及时整理汇总监测资料,反馈通报,建立良好的信息系统,定期总结。

③环境管理与监测情况应随时接受海洋行政主管部门和生态环境部门的检查和监督。

12.4.1 施工期环境监测计划

环境监测的目的在于及时了解和掌握项目施工期各种工程行为对环境保护目标所产生的影响范围、程度及时段,以便对产生环境影响的工程行为采取相应的减缓措施,为环境管理提供科学依据,也是对所采取的环保措施防治效果的一种验证。

1、大气污染源监测

项目施工期主要是机械设备产生的废气,废气产生量极少;且项目全部位于滩涂的围塘内,周边没有大气污染物敏感点,且大气扩散条件极好,因此施工期不做监测安排。

2、噪声监测

项目周边 50m 范围内没有声环境敏感点。

3、地表水监测

施工期基本没有废水向地表水排放。

4、海洋生态环境

(1) 监测因子

考虑施工期的主要施工特点,施工期主要检测以下因子:

水质: pH、DO、COD_{Mn}、BOD₅、无机氮、活性磷酸盐、SS、石油类、Cu、Pb、Zn、Cd、Hg;

沉积物:石油类、Cu、Pb、Zn、Cd、Hg、As、有机碳;

海洋生物: 叶绿素 a 及初级生产力、浮游植物、浮游动物、底栖生物、鱼卵仔鱼、游泳生物;

海洋生物质量:石油烃、砷、镉、铬、铅、铜、锌、汞;

生态多样性: 红树林成活率,覆盖率,红树林植株的平均株高,胸径、叶长等指标,鸟类数量、种类等;

各监测项目按照《海洋调查规范》和《海洋监测规范》的要求进行。其中, 应重点监测施工区由施工引起的水质变化, 以便及时采取响应措施。

(2) 监测频次

水质:施工期:考虑施工期较长,施工期内进行两次监测;竣工后:进行一次后评估监测;

沉积物:施工期:考虑施工期较长,施工期内进行两次监测;竣工后:进行一次后评估监测:

海洋生物:施工期:考虑施工期较长,施工期内进行两次监测;竣工后:进行一次后评估监测;

海洋生物质量:施工期:考虑施工期较长,施工期内进行两次监测;竣工后:进行一次后评估监测;

生态多样性:结合项目生态影响专题报告的调查情况,施工过程中对现有红树林的分布范围、面积及生长情况进行一次调查监测;对鸟类的栖息环境、分布状况、数量、种类等进行一次调查。

(3) 执行单位

委托有资质的监测单位实施监测计划。

(4) 监督单位

由当地生态环境部门进行监督指导,及时报送监测结果。

5、监测范围及站位

项目海域监测站位布设见表 12.4.1-1, 图 12.4.1-1。

序号 纬度(N) 经度(E) 监测内容 1# 21° 4'8.213" 110° 17'7.034" 水质 21° 2'43.151" 水质、沉积物、生态 2# 110° 17'20.383" 21° 1'28.474" 110° 15'17.831" 水质、沉积物、生态 3# 110° 14'25.012" 水质、沉积物、生态 4# 20° 59'37.742" 5# 20° 57'56.658" 110° 11'27.615" 水质、沉积物、生态 21° 0'13.709" 110° 12'1.153" 水质、生态 6#

表 12.4.1-1 跟踪监测站位坐标表

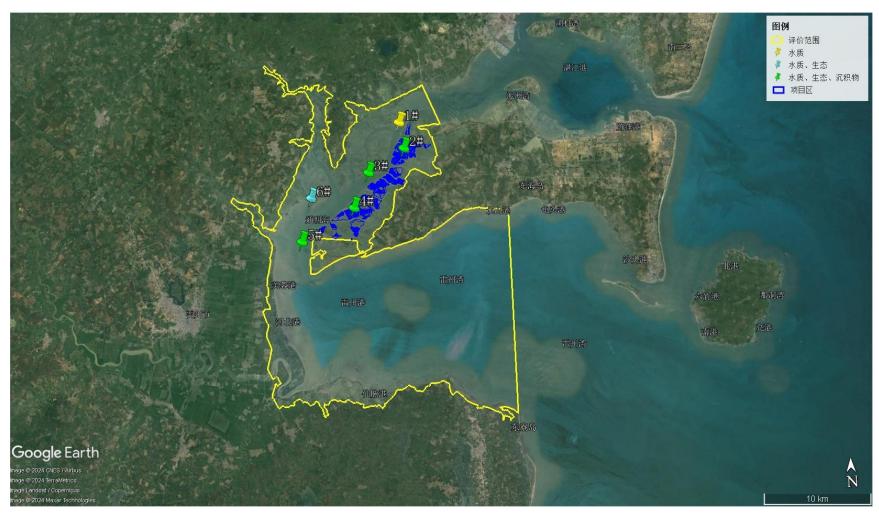


图 12.4.1-1 跟踪监测站位图

12.4.2 运营期环境监测计划

项目建设完成后,运营期间主要产生的污染物为海洋生态保护修复过程中产生的 COD, 氨氮, 无机氮及活性磷酸盐等。根据上述特点, 本项目运营期海洋环境监测因子考虑与现状调查因子基本一致:

监测项目:

水质: pH 值、盐度、悬浮物、化学需氧量、溶解氧、无机氮(氨氮、亚硝酸盐、硝酸盐)、活性磷酸盐、氰化物、硫化物、挥发性酚、有机氯农药(六六六、滴滴涕)、石油类、重金属(铜,铅,镉,铬,锌,汞,砷)、多氯联苯;沉积物:含水率、铜、铅、锌、镉、铬、汞、砷、有机碳、硫化物和石油类共 11 项;

生物质量:铜,铅,镉,铬,锌,汞,砷,石油烃;

冲淤环境:基面沉降量,分层压缩变形监测、侧向位移监测等;

红树林生长情况:红树林成活率,覆盖率,红树林植株的平均株高,胸径、叶长等指标,鸟类的栖息环境、分布状况、数量、种类等;

监测点位: 与施工期监测点位一致;

监测时间和频次:常规监控,每年监测 2 次,春季和秋季各一次。监测采样和分析方法:按照《海洋监测规范》和《海洋调查规范》执行。

12.5 "三同时"环保设施验收一览表

环境保护措施必须与本工程同时设计、同时施工、同时投入使用。在工程完成后,应对环境保护设施进行验收。本项目环境保护措施及"三同时"验收要求见表 12.5-1。

要素	污染源		主要防治措施	验收内容及效果		
		悬浮泥沙	紧闭闸门,施工期围塘不与塘外	塘外海水水质不因本项目的		
			发生海水交换	施工发生变化		
废水	施工期	五工期 生活污水	施工人员住宿与办公租用附近			
			民房,生活污水水纳入当地生活	不向海域排放		
			污水一同处理			

表 12.5-1 "三同时"验收环境保护对策措施一览表

_	T	ı		,
		含油废水	船舶含油废水经收集后,交有资 质单位进一步进行处理	不向海域排放
废气	施工期	燃油尾气	选用优质设备和燃油,加强设备和运输车辆、船舶的检修和维护	
		挖填方	就地平衡,不产生弃方	
		生活垃圾	交由环卫部门接收处理	
固废	施工期	残油、废油等 废物和含油抹 布	交由有危险废物处理资质单位 处理	全部妥善处理
		断损、不合格、 死亡苗木等固 废	均收集后交由有处理能力的单 位处理	工師又日之生
	营运期	海漂垃圾等固 废	集后清运至环卫部门处理	
噪声	施工期	施工噪声	在作业过程中加强对各种机械 的管理、维护和保养,使施工机 械保持良好的运行状态。	《建筑施工场界环境噪声排 放标准》(GB12523-2011)
生态	施工期	生态补偿	施工期间对海洋生物资源造成 的损失进行生态补偿:增殖放流 等生态措施	严格落实增殖放流
	运营期		红树林生长状况的验收	
	船舶溢油事故;		对于溢油:严格环境风险防范 措、应急预案、制定区域溢油应 急联动机制;	完备的环境风险防范措、应急 预案
环境风险			加强施工人员教育工作,安排管 理人员进行巡视,制定奖惩措施	确保规范施工,施工过程施工 人员不对现有红树林的生境 产生破坏
	闸口失效导致施工期间 围塘水外排		增加施工期监测,发现闸口破损 要暂定项目施工,停止土方开挖 回填工作,设置备用闸板	

13 环境影响综合评价结论

13.1 项目概况

本项目为湛江经开区红树林湿地生态修复治理项目,位于东海岛西岸养殖塘区域,项目主要建设内容为:红树林修复工程,包括地形改造、苗木种植、管护等。工程位于东海岛西岸养殖塘区域内,通过工程手段营造植物适宜生长环境和红树林种植,红树林修复面积 683.37 hm²,含保护区修复 31.62 hm²。

13.2 环境现状分析与评价结论

13.2.1 水文动力环境现状分析及评价结论

- 1、潮汐:调查海域的潮汐类型为不正规全日潮,春季各站层涨潮历时略大于落潮历时。
- 2、海流:在垂直结构上看,流速整体分布均匀,各层次的流速差异不大,流速大小从表层到底层依次减小;在水平上看,表现出了全日潮区的潮汐特征,具有明显的周期性;且越靠近狭窄的通道处的站点流速越大(受到地形的挤压流速变大)。各观测站各层潮流方向主要受局地的潮汐(半日潮区)的影响。
- 3、余流: 就整个海域而言,春季调查期间余流较小,除 C3 外,余流方向以落潮流方向为主,东海岛西侧海域由西南向到东北向,逐渐到东海岛南侧海域东南向和东向为主。秋季各站表层的余流流速最大,方向主要为西南方向。ZJL4 站的余流方向主要为西北方向。
- 4、泥沙: 在垂向上,各站表层和底层悬沙浓度较为接近。空间上,近岸站点的平均悬沙浓度高于外海站点的平均悬沙浓度。从整体变化过程来看,各站含沙量一般不超过 0.10kg/m³。

13.2.2 海水环境质量现状分析及评价结论

2024 年 3 月春季调查海区调查结果显示,调查海域的 pH 值、化学需氧量、生化需氧量、活性磷酸盐、无机氮、油类、粪大肠菌群部分站位不达标外,其余均符合。

2023 年 11 月秋季调查海区调查结果显示,调查海域的 pH 值、化学需氧量、生化需氧量、活性磷酸盐、无机氮、粪大肠菌群部分站位不达标外,其余均符合。

13.2.3 海洋沉积物质量现状分析及评价结论

2024 年 3 月春季沉积物监测结果显示:整个调查区域除有机碳、砷在部分站位有超过一类海洋沉积物标准外,其他因子均符合第一类海洋沉积物标准,质量等级为优。

2023 年 11 月秋季沉积物监测结果显示:整个调查区域除有机碳、砷在部分站位有超过一类海洋沉积物标准外,其他因子均符合第一类海洋沉积物标准,质量等级为优。

13.2.4 海洋生物质量现状分析及评价结论

2024 年 3 月结果显示,本次调查区域的环境监测生物均为甲壳类。除甲壳动物体内的铜、锌、镉含量超过《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求,其他因子铅、汞石油烃符合《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求。

2023 年 11 月结果显示,本次调查区域中 T1、T2、T4 环境监测生物均为鱼类,T3 环境监测生物为甲壳类。鱼类及甲壳动物体内的铜、锌、镉含量超过《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求,其他因子铅、汞石油烃符合《全国海岸带和海涂资源综合调查简明规程》和《第二次全国海洋污染基线调查技术规程》(第二分册)中规定的生物质量标准的要求。

13.2.5 海洋生态环境质量现状分析及评价结论

- (1) 叶绿素 a 和初级生产力
- ①2024 年 3 月 (春季)

调查海区表层水体叶绿素 a 含量的变化范围为 $0.722\sim18.5$ mg/L, 平均值为 3.61mg/L; 初级生产力的变化范围为 $31.502\sim677.655$ mg·C/($m^2\cdot d$), 平均值为 125.047mg·C/($m^2\cdot d$)。

⑥ 2023 年 11 月 (秋季)

调查海区表层水体叶绿素 a 含量的变化范围为 $1.53\sim23.4$ mg/L,平均值为 8.52mg/L;初级生产力的变化范围为 $30.281\sim830.280$ mg·C/(m^2 ·d),平均值为 212.88mg·C/(m^2 ·d)。

- (2) 浮游植物
- ①2024 年 3 月 (春季)

本次调查共记录浮游植物 4 门 30 属 54 种。其中以硅藻门出现的种类为最多, 为 23 属 46 种;浮游植物丰度变化范围为 12.7×103~2151×103cells/m³,平均为 680.085×103cells/m³; 浮游植物优势种共出现 2 种, 为假微型海链藻 (Thalassiosirapseudonana)、希罗鞘丝藻 (Pleurosigmaaestuarii); 多样性指数范围处于 1.376~3.253 之间,平均值为 2.001; 均匀度指数变化范围在 0.304~0.624 之间,平均值为 0.424,各站位生物量种间分布不均匀。

②2023 年 11 月 (秋季)

秋季调查浮游植物调查结果显示,调查海域内浮游植物 4 门 30 属 54 种,其中以硅藻门出现的种类为最多,为 23 属 46 种;浮游植物丰度变化范围为 376.47×103~150530×103cells/m³,平均为 17982.81×103cells/m³;浮游植物优势种共出现 2 种,为链状假鱼腥藻、铜绿席藻;多样性指数范围处于 0.267~3.452 之间,平均值为 2.097;均匀度指数变化范围在 0.042~0.544 之间,平均值为 0.331。

(3) 浮游动物

①2024 年 3 月 (春季)

春季浮游动物调查结果显示,调查海域内浮游动物 5 门 16 属 31 种,其中节肢动物 16 种,浮游幼虫 12 种,被囊动物、原生动物、栉板动物各 1 种;调查海域浮游动物平均密度和生物量分别为 711.68ind/m³ 和 44.24mg/m³;从种类组成特征来看,调查海域内优势种有 6 种,分别是刺尾纺锤水蚤、短尾类幼虫、蔓足类幼虫、披针纺锤水蚤、桡足类幼体和小拟哲水蚤;多样性指数变化范围在 1.654~2.646 之间,平均值为 2.191;均匀度指数变化范围在 0.334~0.534 之间,平均值为 0.442。

②2023 年 11 月 (秋季)

秋季浮游动物调查结果显示,调查海域内浮游动物种类 5 门 18 属 38 种,其中节肢动物 21 种,浮游幼虫 14 种,被囊动物、刺胞动物、栉板动物各 1 种。;调查海域浮游动物平均密度和生物量分别为 9311.46ind/m³ 和 175.19mg/m³;从种类组成特征来看,调查海域内优势种有 5 种,分别是刺尾纺锤水蚤、蔓足类幼虫、披针纺锤水蚤、桡足类幼体和驼背隆哲水蚤;多样性指数变化范围在 1.200~2.688 之间,平均值为 1.984;均匀度指数变化范围在 0.229~0.512 之间,平均值为 0.378。

(4) 大型底栖生物

①2024 年 3 月 (春季)

春季调查出现大型底栖生物有 38 种,其中环节动物 15 种、节肢动物 13 种、软体动物 7 种、脊索动物、纽形动物和刺胞动物各 1 种;定量调查海域大型底栖生物平均栖息密度和生物量分别为 137.503ind/m² 和 4.037g/m²;从种类组成特征来看,调查海域内优势种有 2 种,分别为节肢动物的日本长尾虫和中华蜾蠃蜚;多样性指数范围

在 0.122~2.975 之间, 平均值为 1.762; 均匀度指数变化范围在 0.015~0.365 之间, 平均值为 0.216。

②2023 年 11 月 (秋季)

秋季调查出现大型底栖动物 30 种,其中环节动物 12 种、节肢动物 11 种、脊索动物和软体动物各 2 种,星虫动物、棘皮动物和螠虫动物各 1 种;定量调查海域大型底栖生物平均栖息密度和生物量分别为 160.417ind/m2 和 13.672g/m²;从种类组成特征来看,调查海域内优势种有 3 种,分别为日本长尾虫、缅甸角沙蚕和中华蜾蠃蜚;多样性指数范围在 0.220~2.660 之间,平均值为 1.218;均匀度指数变化范围在 0.026~0.317 之间,平均值为 0.145。

(5) 潮间带生物

①2024 年 3 月 (春季)

春季调查共记录潮间带动物 15 种,其中节肢动物 7 种、软体动物 4 种、脊索动物 2 种、纽形动物和星虫动物各 11 种; 栖息密度平均为 25.40ind/m²,生物量平均为 24.393g/m²; 多样性指数平均值为 1.321; 均匀度指数平均值为 0.338。

②2023 年 11 月 (秋季)

秋季调查共记录潮间带动物 21 种,其中节肢动物 14 种、环节动物 3 种、软体动物 2 种、脊索动物和星虫动物各 1 种;栖息密度平均为 17.73ind/m²,生物量平均为 13.01g/m²;多样性指数平均值为 0.923;均匀度指数平均值为 0.117。

13.2.6 渔业资源调查与评价结论

(1) 游泳动物

①2024 年 3 月 (春季)

春季调查共捕获游泳生物 38 种,其中鱼类 31 种,甲壳类 7 种;总重量渔获率为 3.2543kg,其中鱼类重量渔获率为 3.1562kg,甲壳类重量渔获率为 0.0981kg/h;从种类组成特征来看,鱼类优势种有 2 种,分别为佩氏莫鲻和缘边银鲈;甲壳类优势种有 3 种,分别为粗糙沼虾、东方白虾和近缘新对虾。

②2023 年 11 月 (秋季)

秋季调查共捕获游泳生物 33 种,其中鱼类 23 种,甲壳类 10 种;总重量渔获率为 6.80542kg,其中鱼类重量渔获率为 5.96003kg,甲壳类重量渔获率为 0.84539kg/h;从种类组成特征来看,鱼类优势种有 4 种,分别为多鳞鱚、红尾银鲈、斯氏莫鲻和棱鮻;甲壳类优势种有 7 种,分别为:远洋梭子蟹、小口虾蛄属、日本蟳、须赤虾、长趾蝉

虾、近缘新对虾和矛形梭子蟹。

(2) 鱼卵仔稚鱼

①2024 年 3 月 (春季)

春季调查采集的 12 个样品中,在种类组成上,共出现了鱼卵仔鱼 7 种,其中鲈形目鉴定出 3 科 3 种;在数量分布上,共采到鱼卵 2 个,未采到仔鱼。调查海区的鱼卵平均密度为 1.35 粒/m³。采获鱼卵数量密度最高为 T1 调查站位,为 2.70ind/m³,调查期间 12 个点位仅 1 个采到鱼卵,鱼卵出现率为 8.33%。鱼卵密度为 2.70ind/m³。

②2023 年 11 月 (秋季)

秋季调查采集的 12 个样品中,在种类组成上,共出现了仔鱼 3 种,未采集到鱼卵,其中鲈形目鉴定出 3 科 3 种;在数量分布上,12 个调查站位均未采集到鱼卵及仔鱼。

13.2.7 大气环境质量现状分析与评价结论

根据《湛江市生态环境质量年报简报》(2023 年) (广东省湛江生态环境监测中心站),2023年,2023年湛江市空气质量为优的天数有229天,良的天数126天,轻度污染天数10天,优良率97.3%。

湛江市 2023 年二氧化硫、二氧化氮年均浓度值分别为 8μg/m³、12μg/m³, PM10 年浓度值为 33μg/m³, 一氧化碳(24 小时平均)全年第 95 百分位数浓度值为 0.8mg/m³, 均低于《环境空气质量标准》(GB3095-2012)中一级标准限值; PM2.5 年浓度值为 21μg/m³, 臭氧(日最大 8 小时平均)全年第 90 百分位数为 130μg/m³, 均低于《环境空气质量标准》(GB3095-2012) 及其修改单中二级标准限值。

说明项目所在区域湛江市的环境空气质量良好。

13.2.8 声环境质量现状监测与评价

根据现场踏勘及收集的资料,声环境影响评价范围内(200m)没有声环境保护目标,因此没有声环境敏感目标需要现场监测;此外,评价范围内也没有具有明显影响的现状声源;且项目属于红树林修复系统,运营期项目基本没有声源;根据导则要求,无需开展现状噪声监测。

13.2.9 动物资源现状调查

根据引用《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所,2024 年 4 月)

可知,项目地区共监测到 16 科 31 种鸟类,其中近危(NT)1种;共记录鸟类 1773 只,以鸻形目为主,数量为 1634 只;按生境类型及习性可分为:游禽类、涉禽类和攀禽类;多样性指数为 1.94,物种丰富度指数为 6.20。共发现大型底栖动物 17 种,平均生物量为 41.635个/m²,多样性指数达到 2.94。共记录到鱼类 10 种,没有记录到国家重点保护物种。

13.2.10 红树林资源现状调查

根据引用《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所,2024 年 4 月),评价区内真红树植物 6 科 8 种,半红树植物 5 科 5 种,伴生植物 18 科 27 种,未记录到珍稀濒危野生植物,真红树植物多为乔木,集中连片分布,优势树种为白骨壤、秋茄、红海榄、桐花树、木榄、无瓣海桑、卤蕨、老鼠簕。群落类型及其群落结构有:无瓣海桑+白骨壤群落、红海榄群落、无瓣海桑群落、桐花树+白骨壤群落。

13.2.11 生态环境质量现状

根据引用《湛江经开区红树林湿地生态修复系统治理项目对广东湛江红树林国家级自然保护区生态影响专题报告》(中国林业科学研究院热带林业研究所,2024 年 4 月),评价区主要土地利用类型为坑塘水面、水域、红树林地、沿海滩涂、养殖坑塘,陆域区域内没有发现国家重点保护的珍稀濒危植物。

13.3 环境影响评价结论

13.3.1 施工期环境影响评价结论

13.3.1.1 水动力影响结论

红树林修复工程中滩涂高程改造等因素导致工程区域地形抬升,湛江东海岛西南侧海域潮流可能最大流速为121.8cm/s,可能最大流速方向以西北为主,水质点可能最大运移距离介于1488.26m~23825.43m之间。表层的余流流速最大,方向主要为西南方向。项目实施后项目区域流速变化不大,项目区外潮流基本无影响;潮波往湾内上溯的速度将减缓,纳潮量略有减少;区域水体交换能力减弱,但程度较低。项目区水动力有所变化,但对周边海域水动力影响较小。

13.3.1.2 海洋地形地貌影响结论

项目潮沟取土工程与滩涂整地工程会调低海域地形地貌及抬高海域地形地 貌,通过水道改变了水流流向,可能会导致海床形状发生一定改变,水流和泥沙为了响应这种变化,可能会在某些局部区域作出调整以适应新的边界条件,但本项目是在原滩涂上进行生态改造,项目区附近水域有一定的冲淤变化,红树林区域为促淤区域,工程后修复区域逐步淤积,项目远区冲淤影响较小。

13.3.1.3 水质环境影响结论

悬浮泥沙预测结果表明,工程施工产生的悬沙主要分布在施工区周边海域。

项目施工导致的超第一、二类海水水质的海域面积为 8.411km²; 超第三类海水水质的海域面积为 0.210km²。项目施工引起的悬浮泥沙对工程所在区域水质产生一定影响,但这种影响是暂时性的,随着施工作业的结束,悬浮泥沙将慢慢沉降,工程海区的水质会逐渐恢复原有的水平。

13.3.1.4 沉积物环境影响结论

项目红树林种植区滩涂高程改造产生的悬浮泥沙超 I、II 类水质(>10mg/L)面积为 8.411km²,超 III 类水质(>100mg/L)面积为 0.21km²。工程区附近沉积物质量状况良好,高程改造工程通过对原有土壤和沉积物产生翻动和扰动,改变原有的沉积物质的垂直结构和水平分布,但经过一段时间沉积后可恢复到原有结构,不会对本海域沉积物的理化性质产生影响。此外,项目施工(滩涂高程改造)对沉积物的影响时间是短暂的,一旦施工完毕,这种影响在较短的时间内也就结束。因此,工程施工过程产生的悬浮物扩散和沉降后,沉积物的环境质量不会产生较大变化,仍将基本保持现有水平。施工期所产生的污染物均经过处理,不直接在工程区域排放,不会对工程海域的沉积物环境产生影响。总体来说,项目实施对沉积物环境影响不大。

13.3.1.5 海洋生态环境和生物资源环境影响结论

本项目滩涂高程改造工程不可避免对潮间带滩涂和浅海的生态环境产生不可逆的影响包括底栖生物、潮间带生物等。本工程红树林种植区取土工程和滩涂垫高工程产生的悬浮泥沙超I、II类水质(>10mg/L)面积为 8.411km²,超III类水质(>100mg/L)面积为 0.210km²。且鱼、虾、蟹等游泳能力较强的海洋生物将主动逃避,游泳生物的回避效应使得该海域的生物量有所下降,从而影响区域内的生物群落的种类组成和数量分

布。经济鱼类等由于移动性较强,对其影响较不明显。且悬浮泥沙排放的时间相对较短,随着施工作业结束,悬浮泥沙的影响将逐渐减轻。

13.3.1.6 环境敏感目标的影响结论

本工程对海洋生态环境保护目标可能产生的影响主要来自施工作业产生的悬沙。根据水质环境影响分析,工程产生的悬浮泥沙主要在项目工程区海域扩散,超I、II类水质(>10mg/L)面积为 8.411km²,超III类水质(>100mg/L)面积为 0.210km²。

项目建设对通明海海洋保护区的影响主要为施工期悬浮泥沙、含油污水对 保护区内水质环境、沉积物环境的影响,项目所在海域水文动力条件较弱,为减小对水质、沉积物环境的影响,项目在低潮时开展施工,减小悬浮泥沙的扩散范围,且项目施工期短,悬浮泥沙在施工结束后可逐渐消除。项目施工期间产生的污染物均得到有效处置,不排海,本项目对通明海海洋保护区的影响较小。

本项目作为红树林修复项目,不涉及围填海工程、毁林挖塘、矿产资源开发等对红树林资源造成损害的活动,项目建设完成后可修复现有红树林现有生态系统及红树林资源。项目施工期间严格落实环境保护制度,含油污水收集后交由有资质的单位接收处理,施工船舶产生的含油污水回收之前要向海事管理机构进行报告,生活污水纳入当地生活污水进行处理,禁止排海。项目建设内容包括潮沟取土、滩涂垫高造林,滩涂直接造林,项目海岛岸线仅涉及红树林种植,不涉及潮沟取土,不会对海岛岸线造成重大不利影响。

项目位于广东湛江红树林国家级自然保护区内,本项目经由在施工期污染物均能得到有效处置,对广东湛江红树林国家级自然保护区影响较小,且本项目建设内容包含红树林种植,运营期海漂垃圾清捞可以改善周边海域水质,红树林长成后可改善广东湛江红树林国家级自然保护区海水水质环境、沉积物环境,同时提高广东湛江红树林国家级自然保护区海洋生态和生物资源环境。

对于"三场一通道",施工期悬浮泥沙和噪声将对黄花鱼幼鱼保护区、南海北部 幼鱼繁育场保护区造成一定影响,但绝大部分可能受到影响的鱼类可以回避。施工应 尽量避开鱼虾繁殖期,无法避开时应采取减缓措施。项目建成后将对施工期造成生物 资源损耗进行赔偿,可减轻项目施工对"三场一通道"造成的影响。

对于油气管道,项目与油气管道的最近距离约为 514m,且项目滩涂高程改造位于围塘内,因此,施工期的滩涂高程改造对油气管道的基本无影响。

对于养殖活动,围塘内,施工过程可能影响的水生生物主要包括底栖生物及鱼卵仔 鱼,通过对施工过程造成的生态损失进行补偿,可将项目对围塘内生态环境的影响降到 较低水平。围塘外施工期围塘闸门关闭,施工期土方开挖扰动造成的水体污染和机械设备施工噪音仅对施工围塘内部产生影响,不会对围塘外的鱼排产生影响。

对于国控站位,本项目施工产生增量>10mgL 的悬浮泥沙最大包络线均不会扩散至 附近近岸海域监测国控站位内,符合海水水质 一、二类标准。施工单位应在施工期对 悬浮物浓度进行监测,根据监测结果及时调整和控制施工扩散影响。

对于珍稀物种,施工前关注避让白海豚活动区,或采用无害方法驱逐出作业海域,船舶施工噪声对鲸豚影响不大。项目施工期悬浮泥沙主要在项目附近海域扩散,基本不会对中华白海豚的活动范围产生影响。在做好上述防护措施的前提下,施工期对中华白海豚的影响在可控的范围之内。

对于周边海域利用现状,施工过程中关闭闸门,不与塘外海域发生海水交换,基本不会影响距离本项目较远的东海岛南部工业与城镇用海区、雷州湾农渔业区的海洋生态环境。

13.3.1.7 环境空气影响结论

施工使用的船机设备较少,燃油废气产生量相对较小,且排放点分散,施工方在施工过程中尽量使用低污染排放的设备,日常注意设备的检修和维护,保证设备在正常工况条件下运转。因此,施工废气对环境空气有一定的影响,但一般仅局限于施工区域,对施工区域以外的环境空气影响较小。

项目运输车辆运输过程中会产生运输扬尘,由于源强较小,影响不大。

13.3.1.8 环境噪声影响结论

本工程施工区域为近岸海域和陆域,距离住宅区较远,为减小对居民区的影响,建议本工程禁止夜间(22:00~6:00)施工,尽量选用低噪声机械设备,加强对施工设备的维修保养等,使得场界噪声达到《建筑施工场界环境噪声排放标准》(GB12523-2011)要求。施工期间其噪声影响是短暂的,一旦施工活动结束,施工噪声也就随之结束。

13.3.1.9 固体废物环境影响结论

生活垃圾应及时收集,交由当地环卫部门统一外运进行处理。不合格苗木统一收集 交由有能力单位处置。施工船舶作业产生的残油、废油等危险废物,统一交由有危险废 物处理资质的单位将其安全处置。

施工期的固体废物排放是暂时的,随着施工的结束而不再增加,通过积极有效的施工管理措施,施工期固体废物不会对环境造成明显影响。

13.3.1.10 陆域生态环境影响结论

项目无新增临时道路,项目施工营地租用民房,无新增营地占地。项目陆域无临时和永久占地,对陆域生态环境影响微小。

13.3.1.11 通航环境影响结论

施工期高峰期将投入 2 艘运输货船和 1 艘挖泥船,施工过程全部位于围塘内,对围塘外的冲淤变化影响较小,因此本项目实施对周边航道的冲淤环境影响较小,船舶运输距离较短,基本不占用原有航道,不会改变原有航道发展规划和航道技术等级,项目施工作业对过往船舶的航行的影响较小。

13.3.1.12 碳排放影响结论

施工期围塘内的人为活动频繁,可能导致有机碳发生持续释放,但现存的有机碳较低,因此施工期有机碳释放对周边环境影响较小。

13.3.2 营运期环境影响预测与评价

13.3.2.1 海洋水质环境影响评价结论

施工期结束后,3年养护期内,由于对红树林进行管护,可能产生少量悬浮泥沙,对海水环境影响微小;项目运营期红树林长成后,基本不会对海洋水质环境产生负面影响,在一定程度上可以降低废水中的营养物质的含量,起到了净化废水的作用,也缓解可近海水体的富营养化效应,减少赤潮的发生。

13.3.2.2 海洋沉积物环境影响评价结论

项目竣工后需对种植的所有苗木养护3年。苗木抚育过程中可能会产生少量的悬浮物,但产生量极小,对海洋沉积物的环境影响较小。

运营期红树林长成后,基本不会对海洋沉积物环境产生负面影响。红树林湿地系统 具有独特而复杂的净化机理,它能够利用基质-微生物-植物这个复合生态系统的物理、 化学和生物的三重协调作用通过过滤、吸附、共沉、离子交换、植物吸收和微生物分解 来实现对水体的高效净化,从而可以改善周边沉积物质量状态,对海洋沉积物影响较小。

13.3.2.3 固体废物环境影响评价结论

运营期,在红树林巡视、维护和抚育过程中,可能产生少量人工清除的塑料袋、泡沫等海洋垃圾和浒苔等,统一收集后交由环卫部门处理;同时,可能会产生病死坏死红

树林植株,统一收集后交由有能力单位处理,此外,红树林固定、扶正、补植期间会有少量悬浮泥沙产生,但产生量极小,对海洋环境影响不大。

13.3.2.4 海洋生态和生物资源环境影响评价结论

项目营运期无废水和废气产生,抚育过程会产生少量的悬浮物,但产生量极小,不会对东海岛西部周边海水水质造成影响。通过红树林种植,保护和恢复多样化的湿地资源,充分发挥湿地在调节水质方面的作用,有效净化周围海水水质,使项目周边近岸海域海水水质有所改善,更好发挥湿地生态系统功能,保护生态多样性。综上,项目的建设对海洋生态和生物资源环境具有一定积极的影响。

13.3.2.5 海洋敏感目标的影响评价结论

(1) 对周边海洋功能区的影响评价结论

本项目属于海洋生态修复工程,不会对周边的农渔业区、城镇工业用海、保护区等造成影响。项目营运期对其所在海域的沉积物和海洋生态环境主要影响来自海漂垃圾,在做好环保措施,正常运营情况下,项目不会对周边海洋环境造成负面影响。项目营运期红树林可以改善周边水质、沉积物质量状态;可提高湿地生态系统的稳定性,对海洋生态和生物资源环境具有积极的影响。

综上所述,项目与通明海海洋保护区、雷州湾农渔业区等海洋环境保护要求是相符 合的。

(2) 对养殖活动的影响评价结论

红树林湿地对废水中的营养物质和有机碎屑具有明显的网罗作用,从而在 一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用。因此项目营运期是有利于改善周边海水水质环境,在一定程度上可以降低废水中的营养物质的含量,缓解近海水体的富营养化效应,减少赤潮的发生。

(3) 对黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区的影响评价结论

项目红树林长成后对废水中的营养物质和有机碎屑具有明显的网罗作用,从而在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用,有利于提升黄花鱼幼鱼保护区、南海北部幼鱼繁育场保护区的水质环境,提供更多生长、栖息、产卵的环境。

(4) 对自然保护地的影响评价结论

项目运营期海漂垃圾打捞后交由环卫部门处置,污染物得到有效处理后,对项目周

边自然保护地的影响较小。红树林长成后可改善自然保护地海水水质环境、沉积物环境,同时提高自然保护地海洋生态和生物资源环境。

(5) 对鸟类的影响评价结论

本项目运营期基本不会对候鸟日常活动造成不利的影响,红树林种植完成,红树林 生态系统得以恢复,为鸟类提供更多的栖息地,有利于鸟类的生存繁殖。

(6) 对国控站位的影响评价结论

项目实施有利于周边生态环境的改善,红树林的种植在一定程度上降低了废水中的营养物质的含量,起到了净化废水的作用,也可缓解近海水体的富营养化效应,有利于国控站位水质的提升。

13.4 与相关规划和产业政策相符性分析结论

工程位于东海岛西岸通明海海域,根据《产业结构调整指导目录(2024 年 本)》,本项目属于鼓励类中"第四十二、环境保护与资源综合利用-2.生态环境修复和资源利用:矿山生态环境恢复工程,海洋环境保护及科学开发,海洋生态修复",不属于淘汰类和限制类;本项目未列入《市场准入负面清单》(2022 年版),对市场准入负面清单以外的行业、领域、业务等,各类市场主体皆可依法平等进入,符合产业政策要求。同时,项目符合《全国重要生态系统保护和修复重大工程总体规划(2021—2035 年)》《广东省湿地保护条例》《红树林保护修复专项行动计划(2020-2025 年)》《湛江市国土空间总体规划(2021-2035 年)》《广东省红树林保护修复专项行动计划实施方案》《广东湛江红树林国家级自然保护区管理办法》《湛江港总体规划》《全国海洋主体功能区规划》《广东省海岛保护规划(2011-2020 年)》《湛江市2023 年"三线一单"生态环境分区管控成果更新调整成果》《湛江市海洋生态保护"十四五"规划》等相关政策文件要求。项目建设单位切实落实报告提出的建议和相关措施,切实执行国家有关法律法规,从海洋环境保护角度考虑,项目建设可行。

13.5 公众参与

本项目在网上首次公开环境影响评价信息期间未收到公众的反馈意见。本项目征求意见稿公示期间,同时通过网站、报纸和现场张贴等方式征求公众意见,公示期间未收到公众关于本项目的反馈意见。建设单位向生态环境主管部门报批环境影响报告书前,已通过网络平台公开拟报批的环境影响报告书全文和公众参与说明。

公众参与期间,未收到单位或个人对项目提出的反对意见及建议。

13.6 总量控制

本项目为红树林湿地生态修复工程,项目营运期没有废水和废气产生,因此,不设置大气总量控制指标和水污染总量控制指标。项目不再申请总量控制指标。

13.7 建议

项目建议如下:

- (1)项目施工前,应认真设计科学的施工工艺,优化施工方案,确保本项目施工的正常完成。
- (2)项目建设会影响到周边群众的生产(养殖)、生活,但影响是短期的;要求项目业主单位对村民进行环保宣传和对产生的影响进行解释说明。
- (3)项目施工过程应采取本方案提出的各项措施减少对周边保护区及珍稀物种的不利影响。
- (4) 严格执行"三同时"制度,做到环境保护设施与主体工程同时设计、同时施工、同时投产使用。
- (5)加强环境保护和安全生产的宣传教育工作,提高全体员工的环境保护和安全生产意识,使环境保护和安全生产责任成为员工的自觉行动。

13.8 项目总结论

项目建设符合国家产业政策,选址符合相关规划要求。工程产生的污染物采取相应的污染治理措施后均可达标排放,产生的固废得到妥善处理处置;采取的生态保护措施切实可行,可极大地降低项目对周边生态环境的影响,项目建成后,对周边的生态环境的影响是积极的,正面的。经预测,项目运营不会降低评价区域原有环境质量级别。

评价认为: 在认真落实各项环保措施的前提下,本项目的建设和运营对外环境的影响很小,处于可接受范围;在加强环境风险防范、完备环境应急预案的情况下,本项目施工期、运营期的环境风险可得到有效控制。从环境保护角度考察,本项目是可行的。